Alternative Air Sparge Test Method Using Sulfur Hexafluoride (SF₆)

Presented by:

Chris Michalek, LG

Antea Group 40000 Grand River Ave. Suite 404 Novi, Michigan 48375 Chris.Michalek@anteagroup.com

Purpose

Investigation of an Air Sparge (AS) pilot test technique with potential advantages over Dissolved Oxygen (DO) monitoring and other traditional test methods

Purpose (Technique Drivers)

Radius of influence (ROI) is important to AS system design to balance adequate treatment while minimizing the number of injection points

Several methods have traditionally been used to determine ROI including wellhead pressure, groundwater (GW) mounding, and DO

- There is debate regarding which method is most effective
- DO monitoring is often favored for accuracy, however it can be unappealing due to infrastructure, cost, and test duration

Purpose (Technique Background)

Sulfur hexafluoride (SF₆) was used as a tracer gas in a traditional AS test setting to mimic DO distribution in GW

Although this is not a new idea, very limited information on practical field applications of the technique was readily available Johnson et al. (2001). Use of an SF₆-Based Diagnostic Tool for Assessing Air Distributions and Oxygen Transfer Rates during IAS Operation. Bioremediation Journal 5(4), 337-347.

Application (SF₆ Properties)

- Chemically inert
- Nontoxic
- Volatile
- Inorganic
- Nonflammable gas
- Common applications:
 - Insulator in electrical distribution equipment
 - Tracer in HVAC for leak detection

Application (SF₆ Relevance to Technique)

- Solubility similar to DO in GW
 - Mimics DO distribution
- No natural demand
- Can be detected in low concentrations
 - Minimize injection mass
 - Maximize precision
- Negligible presence in the earth's atmosphere
- Although SF₆ is a greenhouse gas, carbon footprint calculations have shown that SF₆ tests are comparable to DO tests

Application (Test Sites)

nogen

The SF_6 technique has been applied at two sites in Michigan:

- Site A Former petroleum terminal
- Site B Refined products pipeline release

Both sites have sandy soils and relatively shallow groundwater

Application (Test Setup)

AS Injection Points

 2-foot submerged screen set ~25-feet below GW

Monitoring Wells

Inogen

- 1-foot submerged screens
- Ranging 5 to 40-feet from AS point
- Depths varied from ~2 to 15-feet below GW
- Zone of interest at both sites was the shallow zone (~2-feet below GW)

Application (Control Test)

- Optical DO sensors sealed in monitoring wells
- Solar powered telemetry provided real-time access to data

XInogen

Application (SF₆ Injection)

	Test Parameters	Site A	Site B	CAST PARTY IN
	Duration (hours)	20	40	
	Total Air Flow (SCFM)	25	15	
	SF ₆ Flow (SCFM)	0.00375	0.0125	
	SF ₆ Concentration (ppmv)	1	5	
XInogen [®] Environmental Alliance	SF ₆ mass injected (g)	0.64	14.58	antea [®] group

Application (SF₆ Sampling)

- GW samples collected using a peristaltic pump
- Sample volume (40 mL VOAs)
- Collected in 4-hour intervals
- Analyzed onsite according to US EPA method 8260B

Results (SF₆ Concentrations)

- Baseline samples < MDL of 1 ppb SF₆
- SF₆ concentrations were measured in a majority of shallow monitoring wells and increased over time

Results (SF₆ Distribution)

Distribution of SF₆ matched the control test (DO), therefore validating the SF₆ technique!

Implications (SF₆ Technique)

Inogen

- Scalable to accommodate a wide variety of site conditions
- Field application is straightforward
- Resulting ROI is more definitive than DO testing
- GHG emissions of SF₆ technique are comparable to traditional AS pilot tests

Implications (Project Efficiencies)

- Potential to decrease pilot test time and costs
- Accurately measuring ROI reduces construction and lifecycle costs
- Example: Site A treatment area of ~5 acres
 - Well spacing based on AS Design Paradigm:
 ROI of 9-ft = ~850 AS wells
 - Well spacing based on SF₆ testing:
 ROI of 25-ft = ~110 AS wells

Lessons Learned

Technique continues to be refined:

- Smaller sample volume
- Sample hold time

Inogen

• SF₆ saturation testing for mass transfer rates

Questions

Chris.Michalek@anteagroup.com

