Aeration, pH Adjustment, and UF/MF Filtration for TSS Reduction of Produced Waters from Hayneville

Research & Engineering - Environmental Solutions, Applied Research Tor H. Palmgren - Exploratory & Special Projects Manager James R. Fajt - Senior Scientist Alexander G. Danilov - ProACT Engineer

<u>Texas A&M University</u> David Burnett, Director of Technology, GPRI

> MÍ SWACO A Schlumberger Company

Haynesville Shale

Copyright © 2013 PennWell Corporation. All rights reserved.

Haynesville - General Characteristics

- Depth: 10,500 to 13,600 ft.
- Lateral reach about the same
- Fracturing Pressure > 10,000 psi
- Bottom Hole Temperature: 100 to 350 F
- Fracturing fluids used: slick water, linear gel and cross linked
- Water sources: rivers, bayous, ponds, lakes, wells, flow back and produced water

Source: Chesapeake Energy

Haynesville - Produced Waters Characteristics

- Recycled water utilized per well fractured : 0-35%
- Common water contaminants: TSS, Calcium Magnesium, Iron, Bacteria
- Key treatment targets: TSS, Scale Forming lons, Bacteria
- This discussion will focus on TSS removal and fluid clarification via membrane filtration

Source: Chesapeake Energy

Four Common Membrane Processes

Process Name	Approximate Useful Particle Size Removed	Permeate	
Microfiltration	0.5 - 50 µm	Clarified water	
Ultrafiltration	0.2 µm	Clarified water	
Nanofiltration	0.5 - 0.7 nm	Softened water	
Reverse Osmosis	0.1 -1 nm	Low salinity water	

11/30/2013

5

Filters Used in this Study

Filter	Manufacturer	Micron Rating (µm)
Polyester bag filter	Pentair	10
PVDF Hollow fiber membrane	Koch	0.1 – 1.0
Stainless steel membrane	Graver	0.5
Ceramic filter	Pall	0.2

Texas A&M 2 GPM Mobile Water Filtration Trailer

Capable of low and high pressure membrane testing, from MF to RO

Pictures from David Burnett, Texas A&M GPRI 7 11/30/2013

10 Micron Polyester Bag Filter

Pentair website

Hollow Fiber Cross Flow Membrane

Koch Membranes web site

Stainless Steel Cross Flow Membrane

Graver Web site

Ceramic Cross Flow Membrane

Pall web site

Characteristics of Water Tested

- Haynesville gas shale waters are clear to yellow at the time of collection.
- Water becomes deep orange upon standing due to mixing with air resulting in iron oxidation.
- The orange color is due to formation of insoluble ferric oxide and hydroxide.

Treatment Overview

Raw and Pre-Treated Feed Water before Filtration

Effect of pH Adjustment on Ferric Oxide Production

pH-adjusted from 5.7 to 7.6 under continuous aeration

Haynesville Produced Feed Water

Results for Feed Waters

Field (Warehouse)data	Raw water	pH-adjusted continuously mixed water after aeration	Untreated continuously mixed water
pН	5.7	7.6	5.6
Turbidity (NTU)	16.7	1443	125
Total Iron (mg/L)	160	150	170
TSS (mg/L)	550	1,400	680
Particle counts (/cc)	131,300	653,000	330,500

Haynesville Produced Water Permeate

Filtration Results for untreated water : no pH adjustment and no aeration

Field (Warehouse)data	Untreated water	10 micron bag filter	KOCH hollow fiber membrane	Graver stainless steel membrane	Pall ceramic filter
pН	5.1	5.2	5.6	5.5	5.3
Turbidity (NTU)	125	120	0.5	2.1	0.12
Total Iron (mg/L)	180	180	130	140	140
TSS (mg/L)	680	660	500	640	670
Particle counts (/cc)	330,500	327,000	133,200	133,200	131,800

Haynesville Produced Water Permeate

Filtration Results for Aerated and pH Adjusted water

Field (Warehouse)data	pH-adjusted continuously mixed water after aeration	10 micron bag filter	hollow fiber membrane	stainless steel membrane	ceramic filter
pН	7.3	7.3	7.3	7.4	7.3
Turbidity (NTU)	1440	980	3.0	1.9	2.3
Total Iron (mg/L)	144	140	1.4	<0.001	<0.001
TSS (mg/L)	930	430	130	430	210
Particle counts (/cc)	653,000	651,000	12,780	11,640	12,810

Conclusions

- Membrane filtration alone is not sufficient for waters that contain dissolved iron, because subsequent iron oxidation results in reintroduction of TSS and turbidity.
- Aeration and pH adjustment converts the dissolved iron to a filterable size, eliminating the problem of post membrane reoccurrence.
- In combination with aeration and pH adjustment the ceramic, stainless steel and plastic UF membranes all produced a stable permeate, reduced the iron to its detection limit and resulted in TSS levels near drinking water quality.

Thank you for your attention!

Questions

