

Advanced Oxidation Frac Water Recycling System

Rich Abrams

Presented at the20th International Petroleum Environmental Conference

November 13, 2013

About Bisco

- Leading global provider of soil and water remediation process systems since 1989
 - >5000 integrated systems
 - >3000 air strippers
 - 750 ozone units
- Based in Taunton, MA
- Acquired assets and IP from Kerfoot Technologies for Advanced Oxidation Technology (Perozone[®])

17,500 Square Foot Fabrication/UL Panel Shop

BISCO Products & Systems

Technologies/Capabilities

- 1. Air Sparge/Soil Vapor Extraction
- 2. Dual Phase Extraction
- 3. Air Stripping Low Profile
- 4. Controls & SCADA Design
- 5. Build-to-Print
- 6. Ozone / Peroxide Technology
- 7. Water Clean Up Units

Forty-foot Container Systems

Bisco/Kerfoot Background

- Bisco and Kerfoot Technologies formed a Strategic Alliance to provide ozone/Perozone[®] systems in 2011
- In December 2012, Bisco acquired the key technology assets from Kerfoot for:
 - Remediation below ground
 - water/wastewater treatment
 - Frac water recycling
- Patent estate consists of >40 patents on applications/equipment, including frac applications

Perozone Technology Overview

- Advanced Oxidation (AO) chemistry
- Aggressively oxidizes and breaks down contaminants to CO₂ and water, including recalcitrant materials
- Metals oxidized to filterable particulate
- Bacteria is killed
- Can be used below surface in soils and groundwater
- Primary applications are above ground to economically and efficiently clean up water

For Frac Water Applications, Enables Recycling

Extensive Ozone & Perozone[®] Experience

- Over 750 successful installations in Europe and the United States
- Fast, reliable remediation with difficult compounds/soils
- Perozone[®] has demonstrated cleanup in periods of months
- Treats numerous compounds

1,4 Dioxane	Chlordane
MTBE	Heptachlor
Napthalene	Aldrin
TBA- Alcohols	
Chloroalkanes	Dieldrin
TPH – alkanes and alkenes	DDT/DDD
Chlorophenols – PCP, TCP	Creosote – Naphthalenes

Perozone[®] and C-Sparge Chemistry

C-Sparge[™] (microbubble ozone)

 $O_3 + 2H^+ + 2e^- \rightarrow O_2 + 2H_2O$ Clean by-products

Perozone[®] (peroxide-coated ozone)

 $2O_3 + H_2O_2 \rightarrow 2OH + 3O_2$ Clean by-products

 Chemical reaction of Perozone[®] releases twice the hydroxyl radicals per mole of peroxide than Fenton's Reagent

The key to high performance is the use of the Kerfoot Spargepoint Injector

Perozone Injector

- Able to produce nanometer to micron sized peroxide-coated bubbles of ozone
- Generates extremely large surface area for reactions

FORMATION OF COATED MICROBUBBLES

Nanobubble Structure

Oxidation Potentials-Indicates How Aggressive Oxidant Will Be

Need Aggressive Oxidation for Frac Contaminants

C-Sparge is Different than Conventional Ozone

	Observed % Reduction					
	Dissolved Ozone	C-Sparge Ozone				
Paraffin hydrocarbons	0.0	95.7				
Aromatic hydrocarbons	19.6	91.4				
Naphthalenic hydrocarbons	29.3	92.0				
Trimethylbenzenes		84.1				
Propylbenzenes		75.0				

Frac-Cleanse Technology[™]

Frac Water- Recycling Objectives

- <u>Economically</u> and safely produce clear saline water for direct reuse, blending with fresh water, or as desalination pretreatment
- Remove hydrocarbons (free, emulsified, dissolved), gelling agents, metals, H₂S, iron sulfide, bacteria, and suspended solids
- Able to handle variability of inlet water
- Compact design- minimal footprint
- Eliminate scale-up risk- use modular design with proven injectors; each module processes 1400 BPD
- Overall cost economical compared to new water and disposal

Bisco Frac-Cleanse[™] System Meets Objectives 15

Frac-Cleanse Process

Reactions

Contaminant

- Hydrocarbons (oil, grease, polymers, BTEX, MeOH)
- Iron, Manganese
- H₂S, sulfides
- Calcium, Magnesium
- Barium, Strontium
- Bacteria

After Perozone

- CO₂, water
- High removal as oxides, hydroxides, sulfates; filtered out
- To S, then to SO3, removed as insoluble metal sulfates
- Removed as carbonates or sulfates; chloride not removed
- Removed as sulfate or carbonate
- Oxidized and effectively killed

Frac Water Experience: Field Units

- 1. Unit installed in western PA in 2008
 - Processed 60 to 100 GPM of flowback water
 - Demonstrated high efficiency on flowback water
- 2. Frac-Cleanse trials in Permian Basin 2013
 - Produced water applications at disposal site
 - Produced water at well sites
 - Flowback water at fracking operations

Trials at over fifteen different sites resulted in clear saline odor-free water suitable for reuse

Results of Brine Water Treatment using Perozone™

				Removal	
	Raw Water ¹ Nanozox ^{™2} System End ³		Efficiency (%)		
			-		
Volatile Organic Compoun	ds (VOCs) (µg/L – pp	b)			
Benzene	240	ND ND		99.6+	
Ethylbenzene	13	ND	ND		
Toluene	190	ND	ND		
Xylenes	110	ND	ND		
n-Butylbenzene	2.7	ND	ND		
Naphthalene	17	ND	ND		
n-Propylbenzene	2.5	ND	ND		
1,3,5 Trimethylbenzene	18	ND	ND		
1,2,4 Trimethylbenzene	35	ND	ND		
		-			
Metals (alkaline and transi	itional) (mg/L – ppm				
Barium	175	69.6	7.65	95.6	
Calcium	9800	6800	2573	73.7	
Iron	20	ND	ND	99.5+	
Magnesium	1100	850	802	27	
General Chemistry (mg/L)					
General Chemistry (mg/L) Solids, total dissolved	100,000	87,000	81,900	18.1	

Flowback and Produced Water- Frac-Cleanse

OK Flowback

Frac-Cleanse Demo Trailers

- Enables demonstration of the performance on-site with customer's flowback and/or produced water
- "Mini-trailer" enables quick on-site trials (1 GPM)
- Pilot Trailer has full scale loop injector to minimize scale-up risk and long term operation
 - Capacity is 12 GPM- 400 bbl/day
 - Fully automatic operation
 - Bisco controls included for remote operation
- Simple set up Frac water inlet/ clean water out

Mini and Pilot Frac Water Trailers

SWD site in New Mexico

3500 BPD Container Arrangement

- Designed for Safe Operation
- Suitable for Flowback and Produced Water
- Modular design minimizes scale-up risk
- Customer's Total Cost is <\$1/bbl
- Available within Four Months after Order

Frac Water Recycling Drivers

- EPA estimates that fracking uses ><u>3 billion</u> barrels (120 billion gal) of water per year
- Fresh make up water costs from \$1/bbl to \$3/bbl
- Residue disposal costs from \$0.25/bbl to >\$10/bbl
 - Trucking is primary cost
 - Total cost of fresh water and disposal is \$1.25 to >\$10/bbl; \$3/bbl is typical

Frac-Cleanse[™] total cost of ownership is <\$1.00/bbl

Frac-Cleanse Total cost of ownership

150,000	gal/day		3571	bbl	/day			
Variable cost per day								
Description	Quantity		Unit	Rat	e		Da	ily cost
Power		62.4	kw	\$	0.11	per KW-hr	\$	164.74
Bisco Oxidant		141.2	gal		\$3.56	per gal of 10%	\$	502.59
Filters		0.5	per day	\$	476.00	per filter	\$	238.00
Filter Disposal (tons)		0.5	per day		\$70	per ton	\$	35.00
Labor, 8 hrs/day		1	person	\$	50.00	per hr	\$	400.00
Total variable cost/day								1,340.32
Daily variable cost per barrel							\$	0.38
Recovered oil Value								
0.5% oil in water recovered		18	bbl/day		\$85	per barrel	\$	1,517.86
Net daily variable cost			,			1		ro \$
Annual Cost								
Variable cost per 12 months		320	days	(Oil	recovery i	not included)	\$4	28,903.76
Mobilization		1	times	\$	7,700.00	~~~~~	\$	7,700.00
System cost amortization		5	years				\$1	95,000.00
Annual Maintenance cost		2%		equ	ipment co	st	\$	19,500.00
Total Cost for 12 months	48,000 1,142),000 2,857	gallons proc bbls	esse	ed		\$6	51,103.76
	All-in Cos	t per l	barrel	\$	0.57	NO OIL RECOVERY		
	All-in Cos	t per l	barrel	\$	0.19	WITH OIL RECOVERY		
Oil receivered by						ata anaratina		

Oil recovered by Bisco oil/water separator offsets operating cost; Net cost reduced to <u>\$ 0.20 per barrel</u>

Comparison to other Technologies

Water Treatment Technologies – Cost vs. Value Add

Competitive Advantages of the Technology

- Economical less than \$1/bbl fully-loaded cost
- Safe design
- Able to remove multiple contaminants in one unit
- Compact
- Minimal secondary waste (not slurry)
- Suitable for mobile or fixed installations
- Proven performance

Frac-Cleanse Summary

- 1. Frac-Cleanse compact, economical system to recycle produced and flowback water
- 2. One compact unit can treat many contaminants:
 - Effectively eliminates hydrocarbons; emulsified, gelling agents, BTEX, oils, grease and surfactants.
 - Metals are oxidized to enable filtration and removal
 - H₂S and iron sulfide are removed
 - Bacteria are killed
 - Suspended solids are removed
 - 3. The technology can be applied in mobile units or in a fixed facility.
 - 4. The all-inclusive cost per barrel of <\$1.00/bbl is an economical solution to recycling produced water

A Demonstration Unit is available for testing

Questions?

