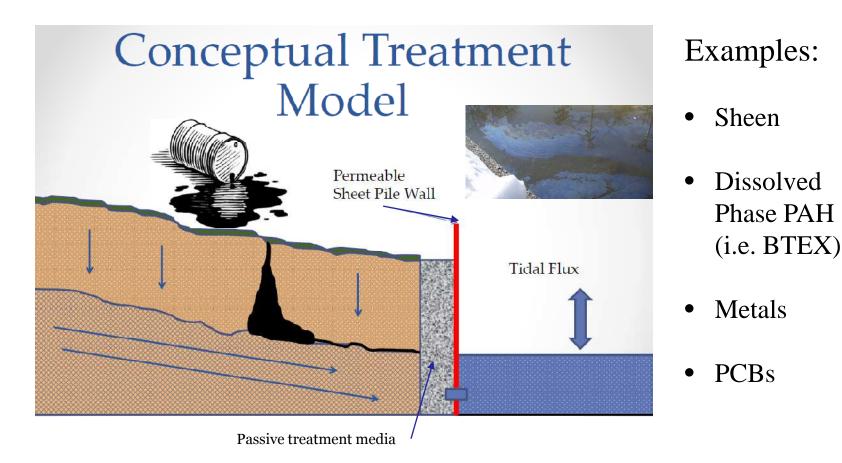


Use and Application of Organophilic Clay Materials for Adsorption of Petroleum and to Address Pipeline and Storage Facility Related Water Issues

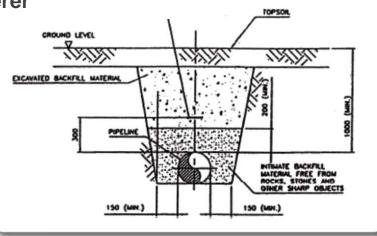
November 2016

* Unique stone-core design

www.aquablok.com


Presentation Outline

- Problem Statement Pathways
- Introduction to AquaBlok / AquaGate
- Overview of Various Applications
- Summary/Questions/Discussion


Problem - Ground Water to Surface Water Interaction

Problem – Preferential Pathways

PREFERENTIAL PATHWAYS; UNDERGROUND PIPES AND UTILITY LINES CAN BE CONDUITS FOR THE MIGRATION OF CONTAMINANTS Written by Stephen R. Henshaw, P.G., President & CEO, EnviroForensics As seen in the March 2013 issue of Cleaner & Launderer

Typical Pipeline Construction

Preferential Flow Pathways: Conduits for Groundwater Contamination by Lisa Weatherford Tuesday, February 18th, 2014

"New research by the U.S. Geological Survey USGS) concerning the vulnerability of our nation's underground drinking water supplies offers a better understanding of how contamination can occur and what we can do to stop it. Yesterday we reviewed three basic measures for drinking water analysis and today we will look at the importance of preferential flow pathways contribute to groundwater contamination."

Problem – Preferential Pathways

Spill Prevention, Control, and Countermeasure (SPCC)

SPCC rules are intended to prevent a discharge of oil into navigable waters or adjoining shorelines.

Pipe Penetrations as Containment Failure Point in Berm/Dike

Low-Permeability Materials for Flood Control & Spill Containment

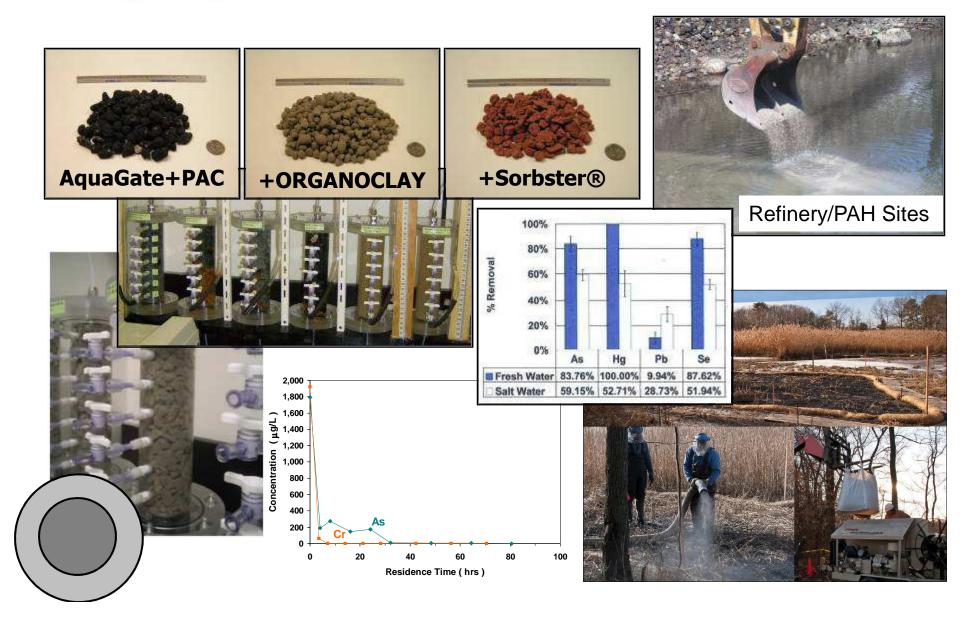
AquaBlok Technology Platform

A Delivery Method for Uniform Placement of Small Quantities of High-Value Materials

- Uniform Distribution
- Flexible/Rapid Installation (Low Cost)
- Custom Blends for Targeted Designs
- Can Vary/Control Permeability
- Self-Compacting for Low Permeability
- Placement Through Standing Water
- Marine & Freshwater Blends
- Passive Adsorption/Treatment Media

powder coating

aggregate core


AquaBlok/AquaGate+ "composite particle"

Low-Permeability for Sealing and Chemical Isolation Barriers

Aquagate Permeable Materials for In-Situ Treatment & Remediation Applications

Range/Applications for Contaminated Water

Technologies Available – AquaGate+ Delivery

Contaminant	Treatment Materials
PAHs, Pesticides, BTEX, PCB's (Free Product / Dissolved Phase)	Activated Carbon, Provect-IRM ¹ , Organoclay, Rubber
Gasoline	Provect-OX ¹ , Oxygen Delivery, Nutrients
VOCs	Activated Carbon, Zero Valent Iron, Bimetallic
Metals, Ammonia (Arsenic, Chrome, Mercury, etc)	Sorbster ² , Zero Valent Iron, Provect-IRM ¹ , Zeolites, Ferric Sulfides, Organic Carbon,

¹ Provectus Product ² MAR Systems Product

© 2008 AquaBlok Ltd.

www.aquablokinfo.com

Adsorptive Material – Petroleum Based Contaminants

Aquagate, ORGANOCLAYTM

REMEDIATION TECHNOLOGIES Technical Data

Aggregate: Nominal AASHTO #8 (1/4-3/8") or customsized to meet project-specific need * Limestone or noncalcareous substitute, as deemed project-appropriate

Binder: Cellulosic polymer

Permeability: 1×10^{-2} to 1×10^{-5} cm/sec

Dry Bulk Density: $65 - 85 \text{ lbs/ft}^3$

Moisture: 10 – 20% (maximum)

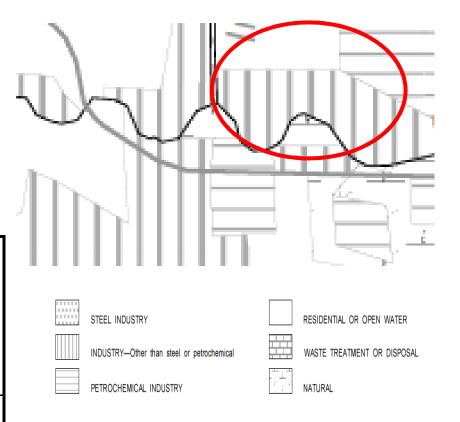
ORGANOCLAY[®] P ORGANIC ADSORPTION MEDIA (POWDER GRADE)

Product Description:

Organoclay[®] P is a proprietary powder adsorption media effective in removing oils, greases other non-aqueous phase liquids (NAPL) and other dissolved high molecular weight/low solubility organic contaminants.

Characteristics:

- · Hydrophobic; will not absorb water or swell when wetted
- Non-toxic to marine and benthic organisms
- · High adsorption capacity of oils, greases and other NAPL
- Demonstrates noncompetitive sorption—can sorb multiple contaminants


Properties:

Property	Value	Test Method	
Particle Size	70% Min. passing 200 mesh sieve	CETCO Test Method	
Bulk Density	50-54 lbs/ft ³	CETCO Test Method	
Oil Adsorption Capacity	.0.5 <mark>lb/lb Min</mark> .	CETCO Test Method	
Quaternary Amine Content	25% Min.	CETCO Test Method	

Mix of Historic Industrial Use Drives Target Contaminants & Remedy

- PAHs primary driver of remediation
- Remedy Objectives

Total PAH Bulk Sediment Concentration in bioturbation zone	27.0 mg/kg – dw (3.4 mg/kg-dw 1 %OC)
Cap Design Life	100 yrs

Example Model Output Results

		Reactive layer			Sand thickness		Initial	Surface sediment (0-10 cm) Average bulk concentration (
			Loading			(cm)		Porewater				
		For model	lb Oclay/cf	% Oclay by	thickness		l	conc(C0)(ug/L)				
Case	Media	(kg/m2/cm		wt	(cm)		Log Koc		Conc at 100 yrs	Conc at 200 yrs	Conc at 300 yrs	Conc at 400 yrs
Area	A:											
Exter	nt of remov	al ranges from	n approx 1 feet	t to potentiall	y 6 feet of .	sediment to read	ch a targe	et elevation of 57.	3 feet			
Pore	water conc	entrations ran	ige from 1.6 ug	ŋ∕L to 958.2 ug	g/L with a r	mean of 195.8 ug	g/L and a	95 UCL of 427.5 ι	ug/L			
Koc il	ndex range	es from 3.7 to S	5.0 with a mea	n of 4.3								
Activ	e Layer Mi	x of Organocla	ay and granula	r media								
	Oclay	2.28	14.20	14%	7.6	30.5	4.3	427.5	24.75	281.05	439.28	482.73
	Oclay	1.52	9.47	9%	15.22	30.5	4.3	427.5	0.74	131.86	373.12	468.94
	Oclay	5.32	33.14	45%	7.6	30.5	4.3	427.5	0.02	15.03	103.24	230.87
	Oclay	2.28	14.20	14%	15.22	30.5	4.3	427.5	< 0.01	14.47	142.16	317.19
***	Oclay	3.8	23.67	27%	15.22	30.5	3.7	958.2	25.23	215.75	258.64	261.60
	AC	1.95	na	na	1	30.5	4.3	427.5	71.29	209.75	300.43	357.02
Area	В:											
Exter	nt of remov	al ranges from	n none to 1 fee	t of sediment	to reach a	target elevatior	n of 573 f	eet				
Pore	water conc	entrations ran	ige from < 1 ug	/L to 119.9 ug	ŋ/L with a r	nean of 23.76 ug	₁/L and a	95 UCL of 41 ug/	Ĺ			
Koc ii	ndex range	es from 3.8 to 5	5.6 with a mea	n of 4.6								
Activ	e Layer Mi	x of Organocla	ay and granula	r media								
	Oclay	0.76	4.73	4%	7.6	30.5	4.6	41	20.95	78.90	90.14	91.29
	Oclay	0.76	4 73	4%	15.22	30.5	4.6	41	0.11	23.04	67.93	86.38
	Oclay	1.52	9.47	9%	7.6	30.5	4.6	41	0.67	26.21	62.56	81.30
	Oclay	2.28	14.20	14%	7.6	30.5	4.6	41	0.02	5.63	28.73	54.64
	Oclay	2.28	14.20	14%	15.22	30.5	4.6	41	< 0.01	< 0.01	0.23	3.13
***	Oclay	3.8	23.67	27%	15.22	30.5	3.8	119.9	0.81	. 23.75	38.28	40.70
	AC	1.95	na	na	1	30.5	4.6	41	11.76	37.63	55.42	66.74

Post-Placement Active Material Properties Confirmation Testing & Analysis

Did the Reactive Material Placed Retain the Adsorptive Properties Assumed in the Design?

Sample Description	Samples	Oil sorption capacity (%)
	1-1	71.70
	1-2	68.36
Raw Orgaoclay (Control)	1-3	68.61
	1-4	70.04
	1	average 69.68
	2-1	65.82
	2-2	64.88
As Manufactured Organoclay	2-3	63.44
Organociay	2-4	60.59
	2	average 63.68
Sample Buckets -	3-1	62.86
(As-Placed Material	3-2	62.65
	3-3	61.40
Recovered from River Bottom)	3-4	61.99
	3	average 62.22

#1 Oil Sorption Capacity – Pre/Post Placement

Oil Sorption Capacity (% dry wt.) for samples

Samples of material were sent to CETCO for testing utilizing Test Method: LP-Organoclay Powdered Sorption Oil Centrifuge-modified to 72 hours

Post-Placement Active Material Properties Confirmation Testing & Analysis

Did the Reactive Material Placed Retain the Adsorptive Properties Assumed in the Design?

log Kow

Kow

Sample #1

Std Dev

Sample #2

Std Dev

Sample #3

Std Dev

CETCO PM-199

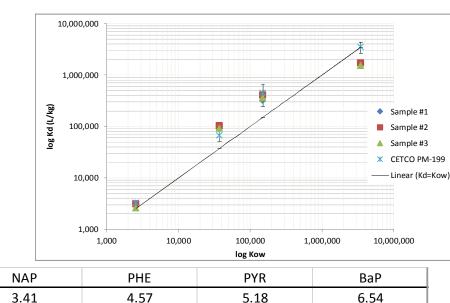
+/- 95% confidence interval

Std Dev

2,570

3,223

178


3,161

432

2,609

86

3280

151,356

323.459

45,948

406,830

57.680

359,871

30,370

454,000

104,900

205,604

3,467,369

1,603,265

404,779

1,747,376

532.597

1,537,488

684,176

3,510,000

442,000

866,320

Texas Tech University Lab partition coefficients as a function of Kow.

Sample #1 – CETCO Powder OC as Received

Sample #2 – As Manufactured Coating, Prior to Placement

Sample #3 – Post Placement Sample Recovered From River

Octanol-water partition coefficients of PAHs and partition coefficients - standard deviation in estimate for the three tested organophilic clays. Values reported for CETCO PM-199 from TR-840[2]

Specification: "The organoclay shall have a documented partition coefficient (Kd) of at least 50,000 L/Kg for light weight PAHs (eg. phenanthrene) and 350,000 L/Kg for mid to heavy weight PAHs (eg. pyrene)."

37,154

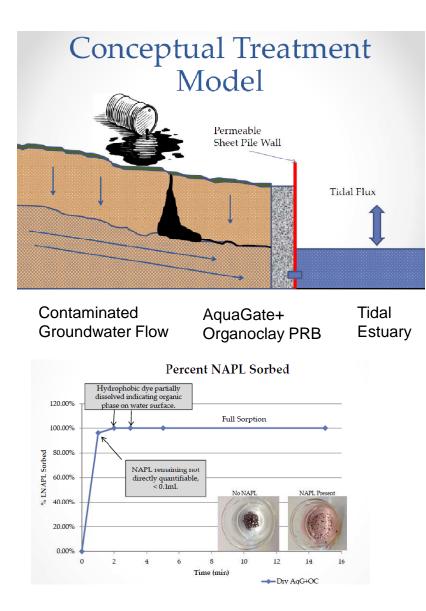
91.619

8,709

105,183

9.499

93,367


4,516

68,000

8,420

16,503

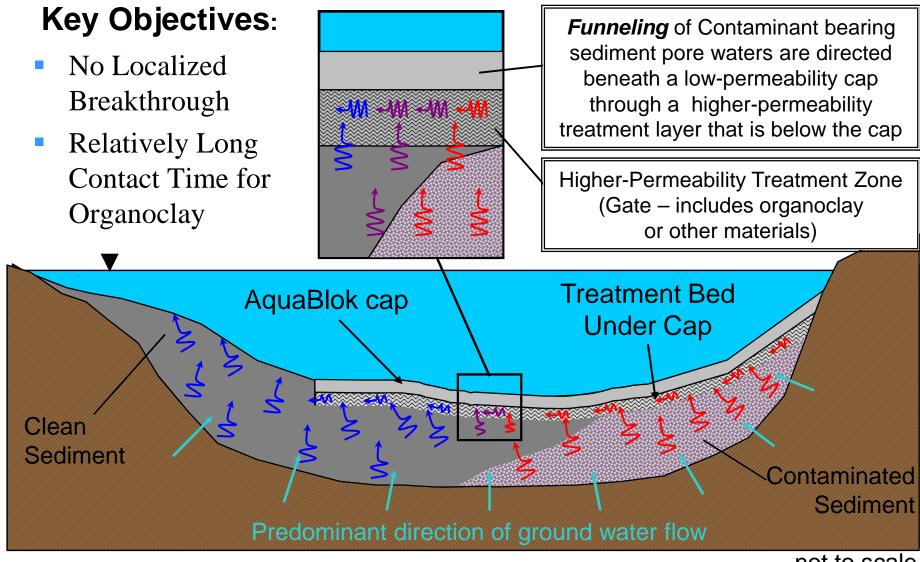
Permeable Reactive Barrier (PRB)

Site Location: U.S. EPA Region 7 Confidential Project, Kansas

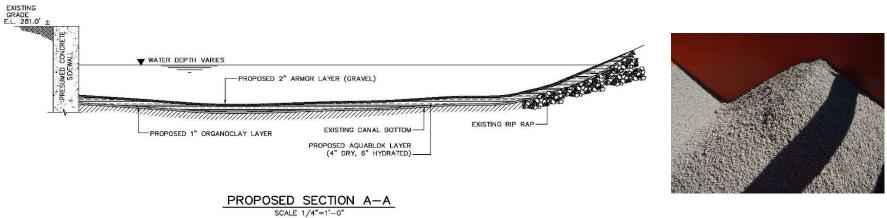
Project Status: Completed Fall 2015

Funnel & Gate Approach to Address Ground Water Impacts from MGP Site

Site Location: U.S. EPA Region 2 Confidential Site – New York State


- Setting/Purpose: Canal/River (freshwater). MGP Site – PRB and low permeability barrier/cap over contaminated sediments. Site area was approximately 4,000 square feet.
- Contaminant(s) of Concern: Coal Tar associated with historic MGP site, including PAH (polynuclear aromatic hydrocarbons) and DNAPL (Dense Non-Aqueous Phase Liquids).
- AquaBlok Cap Design/Site Area: Multi-layer design comprised of a one inch basal layer AquaGate+ORGANOCLAY PRB covered with a hydrated layer (~6 inches in target thickness) of AquaBlok 3070FW. The cap was then armored with a two-inch layer of AASHTO #2 stone.
- Method of AquaBlok Placement: Shorebased excavator

Example of Sheen



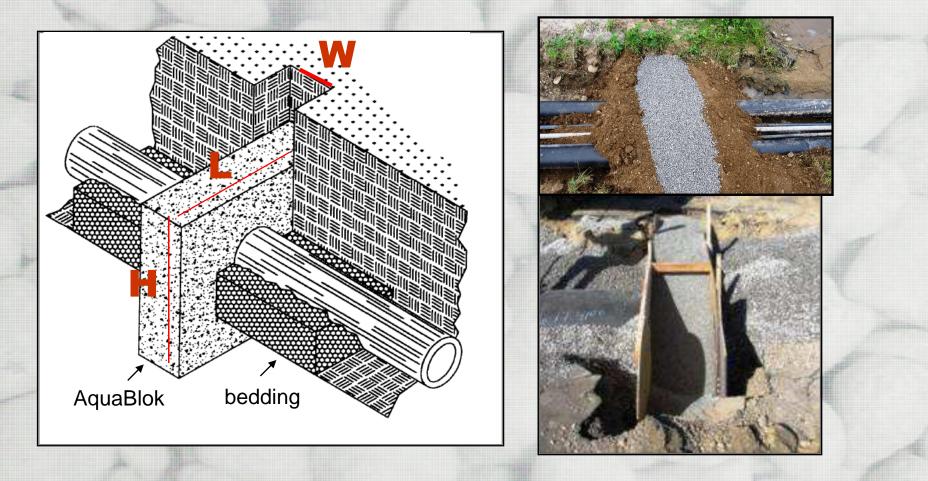
The Approach – Funnel & Gate

not to scale

Funnel & Gate Approach - Continued

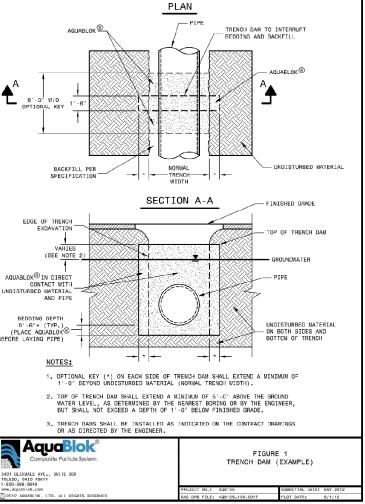
Below and Right: View of AquaGate+Organoclay Being Applied & Close up View in Place

Case Study of Funnel & Gate Approach - Continued

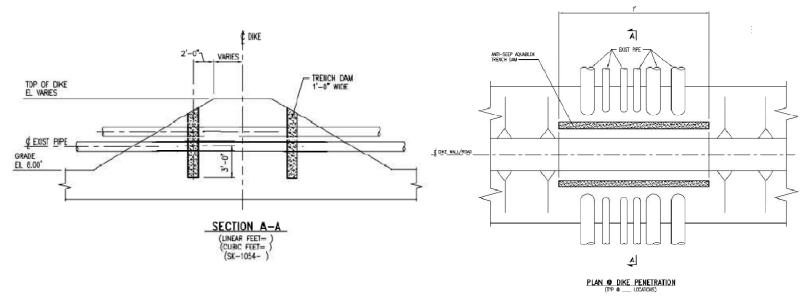

Completed Cap with Armor Stone - Right

View of Completed Cap Following Spring – Water Levels Back to Normal Level - Left


Application Examples Pipeline & Utility-related Applications



Trench Dams/Anti-Seep Collars


Design/Installation of Anti-Seep Collar

Elimination of Pipe Bedding as Preferential Pathway

Trench Dam Construction Considerations -

- Width of Dam 6-inch thickness will provide hydraulic conductivity of approximately 5x10⁻⁸ in hydrated state.
- 2. Bedding Depth / Distance Under Pipes Typically recommended to be a minimum of 6-inch.
- Trench Width Where collars are keyed into surrounding soils, it is recommended that AquaBlok extend a minimum of 1-ft beyond undisturbed material.

Application Examples Preferential Pathway - Flow Along Pipes

Setting / Purpose: Pipeline cap and Anti-Seep Collar. Objective was to cut off site contaminant pathways during excavation and installation of natural gas pipeline.

Key Benefits:

- Reduce potential impacts in Ecologically sensitive areas (River Crossings)
- Provide Seismic/Fatigue Dampening in Sensitive Areas

Installation Notes:

- Coffer Dam approach used to isolate pipe trench from surrounding soil
- Continuous measurement of AquaBlok performed to insure design thickness of cap

Summary – Q&A

AcuaBlok as a Low-Permeability Material for Remediation & Geotechnical Applications:

Aquagate <u>Permeable Treatment Material for</u> <u>Remediation Applications:</u>

Permeable Treatment Material for Sediment Remediation Applications

- Provides Uniform Delivery of Small Quantities of a High Value Treatment Material
- Use of Powder Treatment Materials = Faster Adsorption Rates
- Creates Thicker (uniform) Layers with Less Material Usage

 Ability to Mix Treatment Materials with other Granular Capping Materials and Provide Uniform Delivery in a Single Lift - Less Risk of Material Separation Wide Range of Treatment Materials

- Rapid Installation Using Conventional Equipment
- Proven Full-Scale Production On-Site Manufacturing