Toluene Transport and Attenuation in a shallow bedrock aquifer with phytoremediation in an urban setting: Insights from multiple techniques

> Jeremy Fernandes¹, Beth Parker¹, Steven Chapman¹, Ramon Aravena², Kari Dunfield¹

- ¹ University of Guelph, Ontario, Canada
- ² University of Waterloo, Ontario, Canada
- ^{ALL} G360 Centre for Applied Groundwater Research

Acknowledgments

Research Team

Kari Dunfield, PhD Beth Parker, PhD Ramon Aravena, PhD Steven Chapman, MSc, P.Eng.

Dr. Elizabeth Haack Sr. Environmental Scientist, Advisian

Dr. David Tsao Americas Remediation Technology Manager, BP Corp. NA

Project Support

BP Canada Energy ULC

Larry Stone, Decommissioning PM and Team Lead Mike Early, Project Manager Alan Scheibner, Project Manager

Advisian

J. McBride, N. Scaiff

Aecom

S. Todd, K. Ali, N. Frey, S. Alexander

University of Guelph

J.Hommersen, M.Ben-Israel, A.Roebuck,

R.Kroeker, A.Fomenko and many more...

The Centre for Applied Groundwater Research

Advisian

Collaborative Project Objectives

Contaminant Hydrogeology

- 3-D Mass and Phase distribution of toluene in dual porosity system using high resolution systems
- Plume transport and fate in fractured porous rock including matrix diffusion processes
- Hydrochemistry characterization
- Assessment of biodegradation:
 - Redox
 - CSIA: $\delta^{13}C$ & $\delta^{2}H$ in Toluene, $\delta^{13}C$ in DIC, $~\delta^{34}S$ in Sulfate

Microbiological Aspects of Phytoremediation

Toluene Degrading Microbial Activity

Site History

Conventional Monitoring Well Network (1989 - 2014)**OW15A OW15B** North **BH11** BH4 South 0-**Cobbled Fill** sốq 2= ແ4= > 1,000 + ug/LŅ BH9 Fractured 100-1,000 ug/L **GW** Flow **Dolostone** Aquifer < 24 ug/L 6-Shallow BH8 GW 5 10m 0 MW11-19 **Toluene Trends in Conventional Wells** BH6 Solubility 1000000 BH11 -BH-11 100000 BH12 BH5 OW15A/B -BH4 10000 **OW15A** BH7/ 1000 [oluene (ug/L **BH14** BH4 OW16 BH-13 100 MW102 MCL 10 MW11-18 **OW15B** 1 **Buried Solvent** Distribution Lines, 0.1 10 m Building 01/2006 01/2009 01/2010 01/2005 01/2008 01/2014 01/2015 01/2007 01/2011 01/2012 01/2013

Fractured Bedrock Attenuation Mechanisms

(Adapted from Freeze and Cherry, 1979)

Discrete Fracture Network Framework for Site Characterization (Parker, 2012)

Rock Core VOC Sampling

Downhole Geophysical Logging

Natural Gamma, ATV, OTV, Resistivity, FWS, ALS_(Pehme et al., 2013)

Flute Transmissivity Profiling (Keller et al, 2014)

Hole Diameter = 51 mm / 2-inch

Coring with Portable Drill

- Shaw backpack drill
 <u>www.backpackdrill.com</u>
- Eco-sensitive, small footprint
- ~45cm (1.2 ft) continuous core runs
- Added capability: multi-level monitoring six depth-discrete intervals

Solinst CMT

www.solinst.com

(Einarson & Cherry, 2002)

Multilevel Monitoring Systems

Adapted Solinst CMT[®] **System**

Installed in a 2" bedrock hole with packer seals

Adapted Solinst Waterloo[®] System (G360 System)

- Multidepth groundwater sampling
- Head measurements in vert. profile
- Water inflated, removable

Results

Toluene storage in Matrix Porewater

- Thin horizon indicating residual toluene NAPL
- > 95% of mass in 2m depth interval of bedrock matrix

Estimated Phase Distribution in Matrix

(based on 11 cored locations)

Dissolved: ~4% Sorbed: ~ 95% NAPL (residual) : ~1%

$$C_w = \frac{C_t \rho_b}{(K_d \rho_b + \phi_w)}$$

Feenstra et al., 1991

Flow System Characterization using High Res. Vertical Head Profiles

Possible Groundwater Flow System Influences from Infrastructure (Buried Trenches)

1D Discrete Fracture Transport Model

(CRAFLUSH based on Sudicky & Frind, 1982)

- Advection + dispersion in fractures
- Diffusion in matrix
- Sorption
- First order degradation

	Model Parameter
R-factor	8
matrix porosity	0.12
fracture porosity	3E-3
Avg. Lin. Vel.	2.7 m/day
Gradient	0.01
1 st Order Decay (half-life)	1.0 years (calibrated)
Fracture Spacing	0.06m

Aenaerobic Toluene Decay (1/2 Life): 0.04 – 1.5 years (Lawrence, 2006)

1D-Dual Porosity Transport Model: CraFlush

(Sudicky & Frind, 1982)

Simulated Profiles Along Fracture Plane

Plume Front (MDL: 0.2 ug/L)

Predicted: ~80 meters Actual: < 30 meters

Plug Flow GW Position: 29km

Strong attenuation due to matrix diffusion with sorption and biodegradation

Conclusions

Source Area Delineation

- Enhanced by portable drilled core data and MLS
- Detailed mass / phase delineation of toluene source
- Residual / weathered NAPL inferred from rock matrix sample concentrations
- Diffused source has transitioned from NAPL to multi-phase

Shallow Bedrock Hydrogeology

- Highest impacts in a thin, shallow, bedrock horizon.
- Horizontal fracture flow
- Disconnected fracture network (likely diffusion controlled)
- Transport retarded by sorption, matrix diffusion, biodegradation and *anthropogenic factors (e.g. buried utility trenches)*

The Centre for Applied Groundwater Research

CHANGING LIVES IMPROVING LIFE

Parker, B. L., Cherry, J. A., & Chapman, S. W. (2012). Discrete fracture network approach for studying contamination in fractured rock. AQUA mundi, 3(2), 101-116.

Einarson, M. D., & Cherry, J. A. (2002). A new multilevel ground water monitoring system using multichannel tubing. *Groundwater Monitoring & Remediation*, 22(4), 52-65.

- Pehme, P. E., Parker, B. L., Cherry, J. A., Molson, J. W., & Greenhouse, J. P. (2013).
 Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes. *Journal of hydrology*, 484, 1-15.
- Keller, C. E., Cherry, J. A., & Parker, B. L. (2014). New method for continuous transmissivity profiling in fractured rock. *Groundwater*, *52*(3), 352-367.
- Lawrence, S.J., 2006. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature (No. 2006-1338).
- Feenstra, S., Mackay, D. M., & Cherry, J. A. (1991). A method for assessing residual NAPL based on organic chemical concentrations in soil samples. *Groundwater Monitoring & Remediation*, 11(2), 128-136.
- Meyer, J. R., Parker, B. L., & Cherry, J. A. (2008). Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. *Environmental Geology*, 56(1), 27-44.
- Munn, J. (2013). High-resolution discrete fracture network characterization using inclined coreholes in a Silurian dolostone aquifer in Guelph, Ontario. University of Guelph (Masters Thesis)
- Sharp, J. M., Krothe, J. N., Mather, J. D., Gracia-Fresca, B., & Stewart, C. A. (2003). Effects of urbanization on groundwater systems. *Earth science in the city: A reader*, 257-278.
- Vogt, C., Cyrus, E., Herklotz, I., Schlosser, D., Bahr, A., Herrmann, S., ... & Fischer, A. (2008). Evaluation of toluene degradation pathways by twodimensional stable isotope fractionation. *Environmental science & technology*, 42(21), 7793-7800.

Further evidence: Anaerobic biodegradation occurring along flow path

Dual Isotope Fractionation

Mass Storage Capacity

Site Specific Conditions

Total Mass Calulation (Dissolved + Sorbed) $M = \phi \times S \times R$

Site Specific Parameters

Aqueous solubility of toluene (S) =	535 mg/L
Retardation Factor (R) =	8
Fracture Porosity φ _f =	3E-3
Matrix Porosity $\phi_{m}=$	12%
Density of toluene =	867 kg/m3

 $M_{f} = 0.015 \text{ L/m}^{3}$ M_{m}

 $M_{\rm m} = 0.6 \, {\rm L/m^3}$

>97% of total mass in the matrix

Groundwater Gradient Variability

 Temporal & spatial variability in contoured head data

- Avg. Linear GW Velocity in Fracture Network
- Shallow = 0.01 1.0 m / day
- Deep = 0.1 1.0 m/day

Horizontal Fractures Dominate Structure

High Angle Fractures in Vertical Core

Top 1.5m / 5 ft of bedock - Evidence of short vertical fractures

15m / 50 ft into bedrock - Vertical fractures run much longer

*Vertical core holes biased (Munn, 2012)