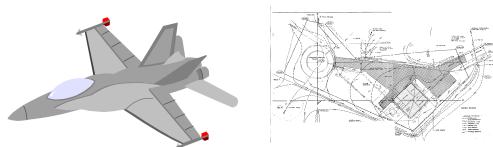
THE USE OF PROCESS MODELING SOFTWARE IN INDUSTRIAL WASTEWATER TREATMENT -CASE STUDIES THAT ADDRESS AIR EMISSION, METALS REMOVAL AND WATER REUSE

Malcolm Fabiyi, PhD, MBA; Rajeev Goel, PhD, P.Eng., PE Hydromantis


Agenda

- Overview of industrial water & wastewater treatment
- What is modeling?
- Treatment Challenges
- Role of process models
- Case studies
- Conclusion

What Is Modeling?

What is a model?

a representation of a system that can predict *some* system behavior

rinletx&o(recnum&o),rinlety&o(recnum&o),rinletz&o(recnum&o)
endif

1b20..continue

Why model a system?

 stand in for the real system (system may not exist or not feasible to "test" the system)

Models Reduce Complexity, Cost & Risk

Why Use Modeling?

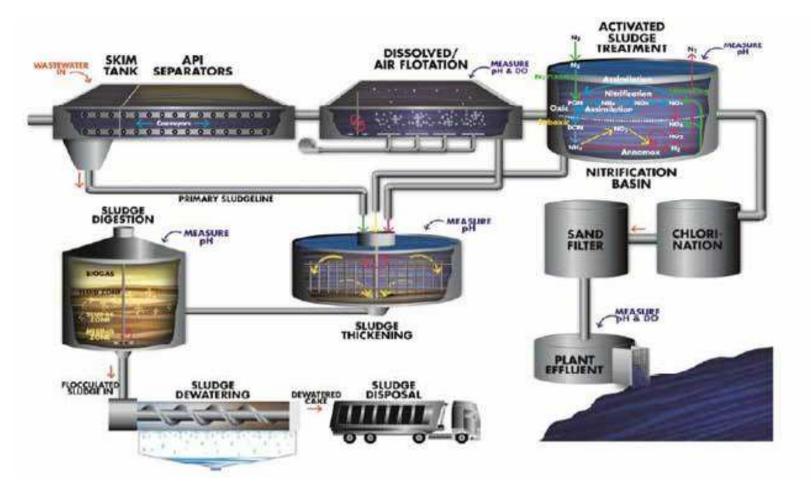
- Handles complexity with relative ease
- Cheaper than building/modifying the real system
- Easier than carrying out testing on existing systems
- Risk-free see the consequences before implementation
- Get results quickly

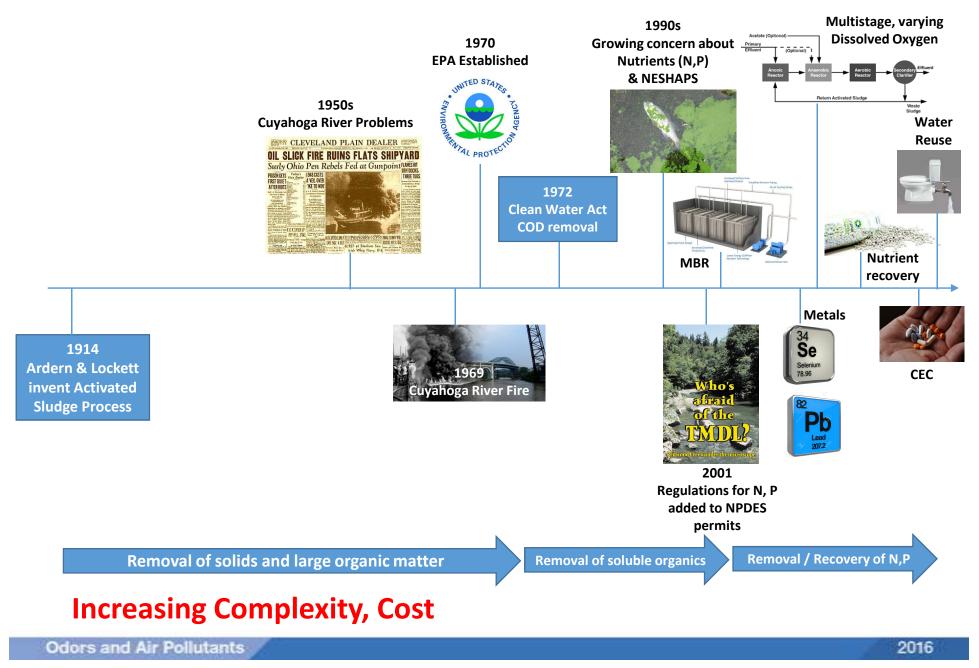
Drivers for Water & Wastewater Treatment

Regulatory Drivers

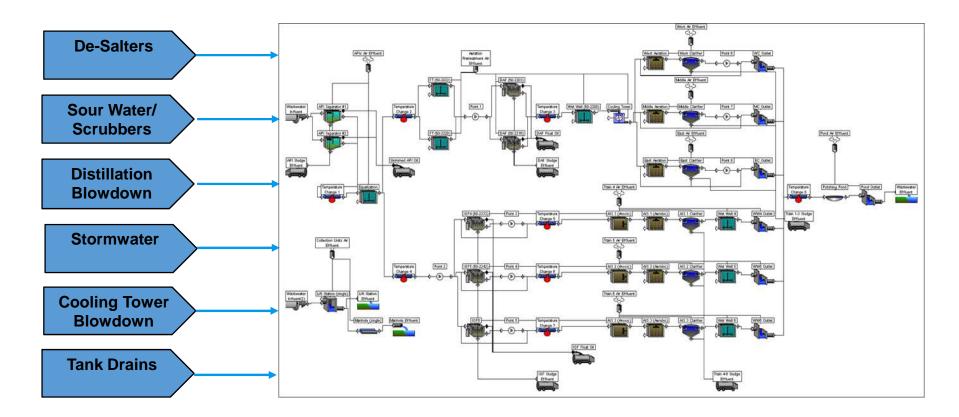
Phase	Regulations
Liquid	NPDES (CWA)
Solids	NPDES
Air	NESHAPS (CAA)

Sustainability & Economic Drivers

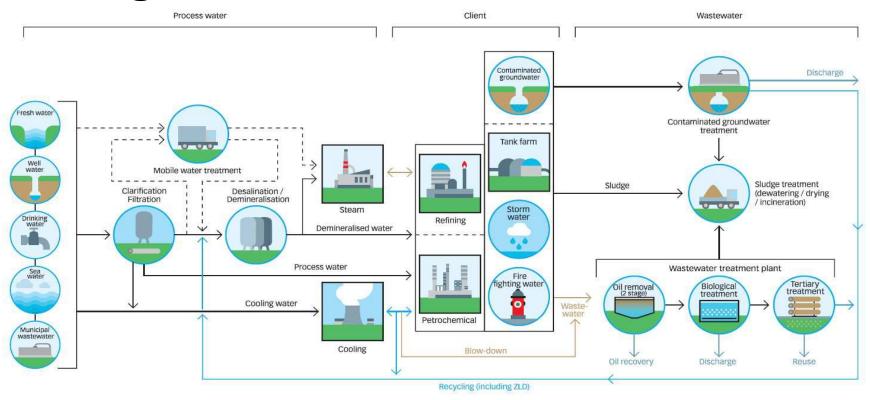

Industrial Wastewater Treatment


Odors and Air Pollutants

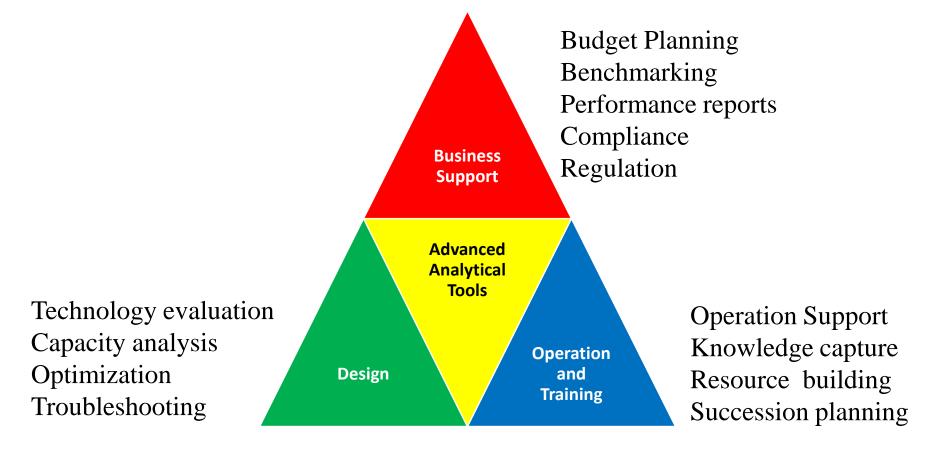
Wastewater Treatment

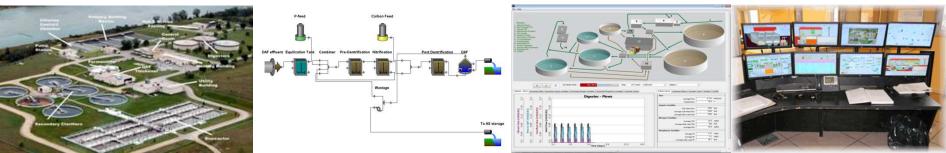

The Activated Sludge Process (Refinery Wastewater)

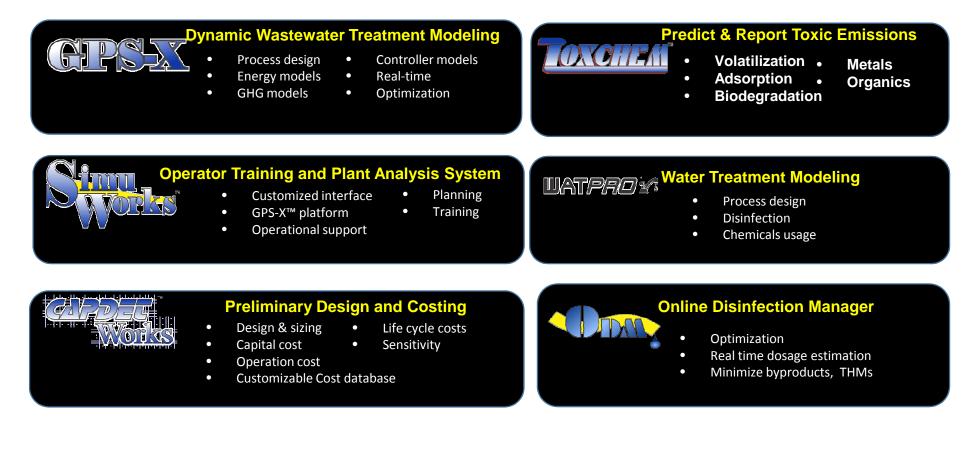
The last 100 years of Wastewater treatment



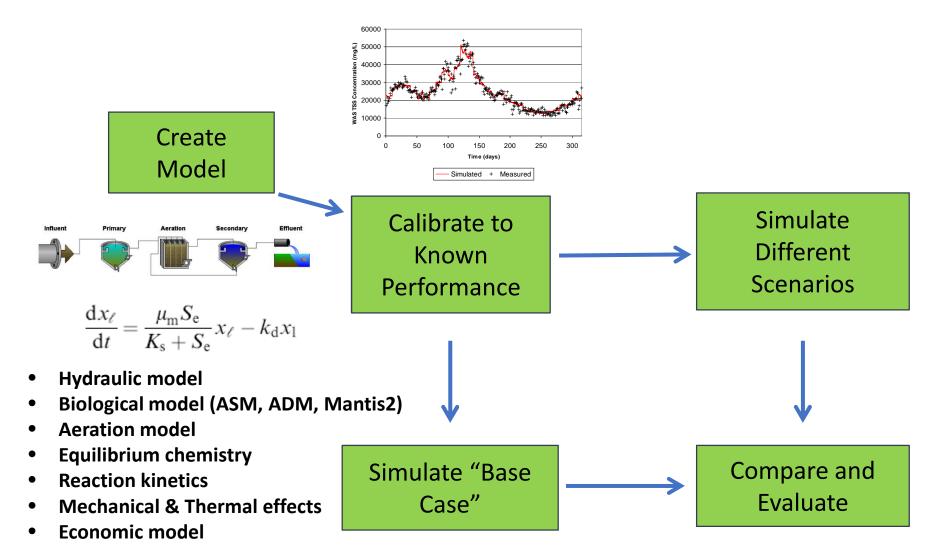
Refinery Wastewater Systems


- Industrial wastewater comes from a variety of sources
- Highly complex mix of contaminants


Increasing complexity of water management


- Balance multiple sources
- Match treatment process to need / use
- Meet regulatory obligations

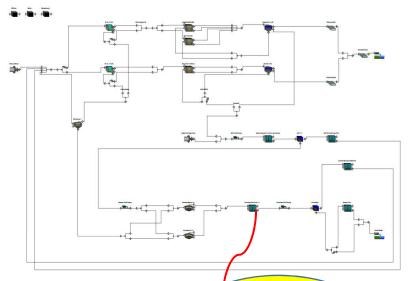
Use of Models in Wastewater Treatment



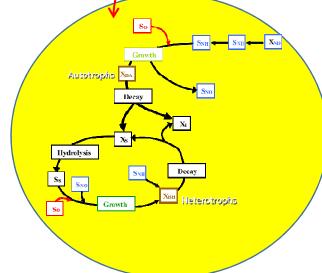
Hydromantis Software Solutions

How Models are Used

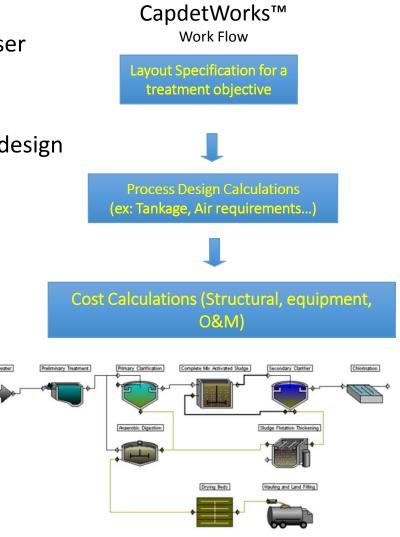
Models can be used to support training

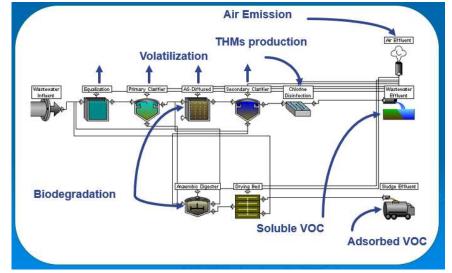


Dynamic modeling and simulation tool

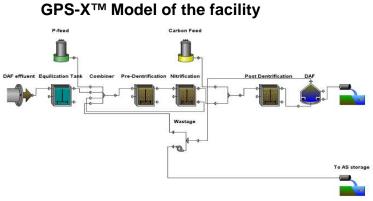

Real Plant

Virtual Plant


- Predicting and Assessment of Water Quality
- Water reuse, process water treatment
- > Technology Evaluation (process, aeration, etc.)
- Limit of Technology
- Assessment of Compliance
- Operating cost estimates
- Optimization process & cost

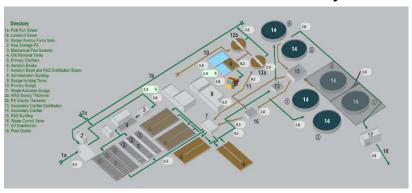

Preliminary Design & Costing

- <u>Designs</u> individual unit processes based on a user specified treatment plant layout
- **<u>Costs</u>** each unit process (±15%)
- <u>Design Override Capability</u> user can fine-tune design and/or costing
- Uses
 - Capital planning
 - Process & design screening
 - Life cycle cost analysis
 - Risk evaluation
 - Sustainability cost assessment
 - Technology screening



- Estimates fate and emission rates of organic compounds and metals from collection and treatment system components
- Used since 1991, +840 compounds & metals
- Specified in regulations (CAAA, SARA 40 CFR, Part 63)
- Customizable (processes, compounds, parameters)
- Applications
 - Contaminant fate
 - Technology evaluation
 - Parameter estimation / validation

Customized Operations & Training Tool

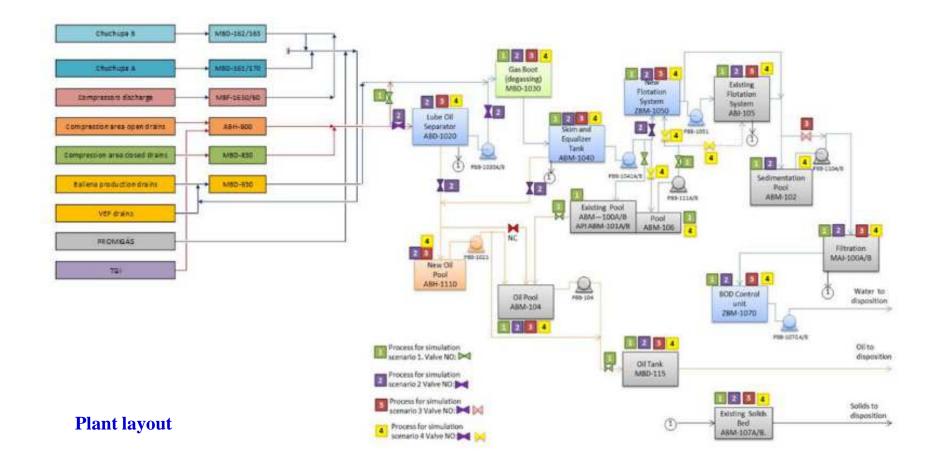


- "Flight simulator" concept
- Replicate pilot or full scale
- Scenario planning
- Operator training
- Troubleshooting & optimization

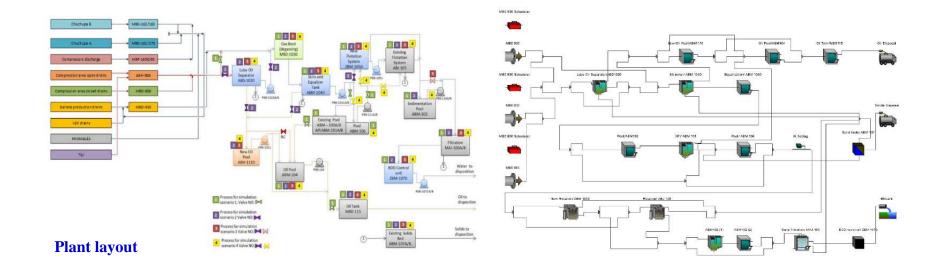
Bird's eye view of a wastewater plant

SimuWorks[™] 3D interface of the facility

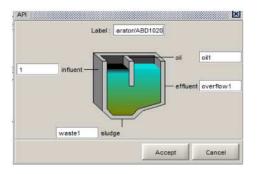
Training Benefit



"It took me about 5-6 months to understand the activated sludge process" – Engineer at Major Refinery Facility

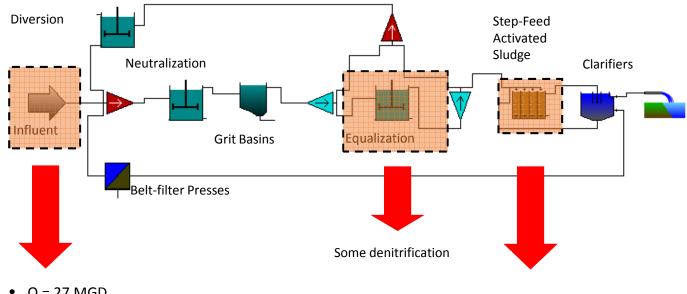

.... Rotation in the WWTP

Case Study 1: Develop a calibrated model of a petroleum refinery WWTP



Goal: Support plant analysis, decision making and process optimization

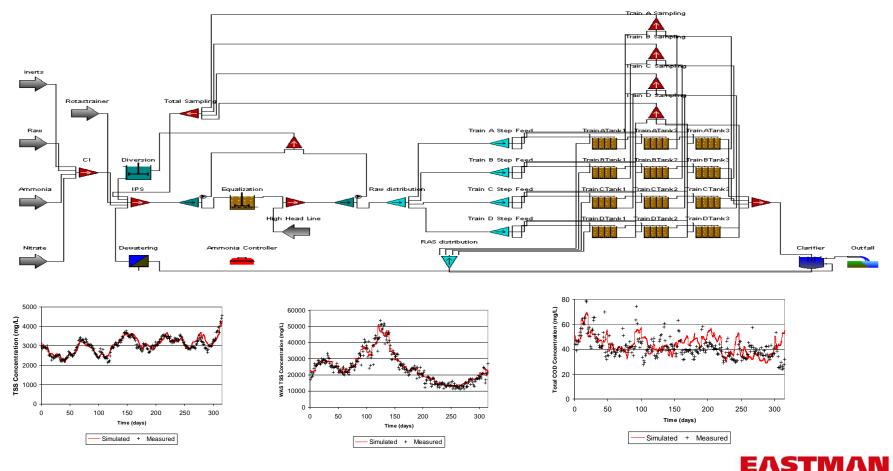
Case Study 1: Develop a calibrated model of a petroleum refinery WWTP


New API unit developed

- GPS-X[™] provided accurate representation of WWTP
- Tool used to support decision making & water management significant savings

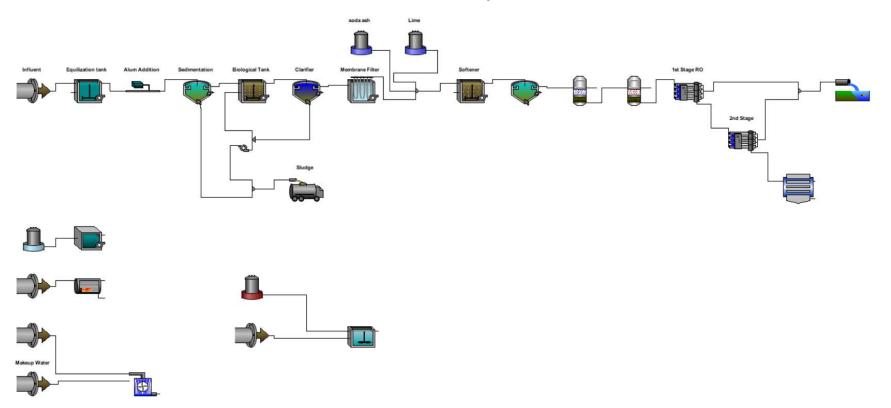
Case Study 2: Development of model for assessing impacts of loading changes, operational changes, toxic spills, etc.

Chemical Manufacturing Facility, WWTP: Treats waste from plant that manufactures chemicals, plastics, and synthetic fibers



- Q = 27 MGD
- Organic acids & alcohols (COD = 1700 mg/L)
- Solids (TSS = 140 mg/L)
- Ammonia, nitrates, phosphates
- Elevated temperature 80 -100 °F

- 4 trains with 3 aeration basins each
- Step feed strategy varies
- Mixed liquor sampled from each basin
- Goal: Develop optimization strategy for dealing with Spills & reliably meet regulations



Case Study 2: Model Setup - GPS-X[™] Layout

- Optimal diversion strategy was developed
- Added simultaneous nitrification/denitrification to ASM3 to handle observed denitrification in aeration basins
- Facility reliably met treatment goals

Case 3: Industrial Facility with Water Reuse

• Goal: Develop in-house water management platform to offset \$200k per year cost

Case 3: Sample Output

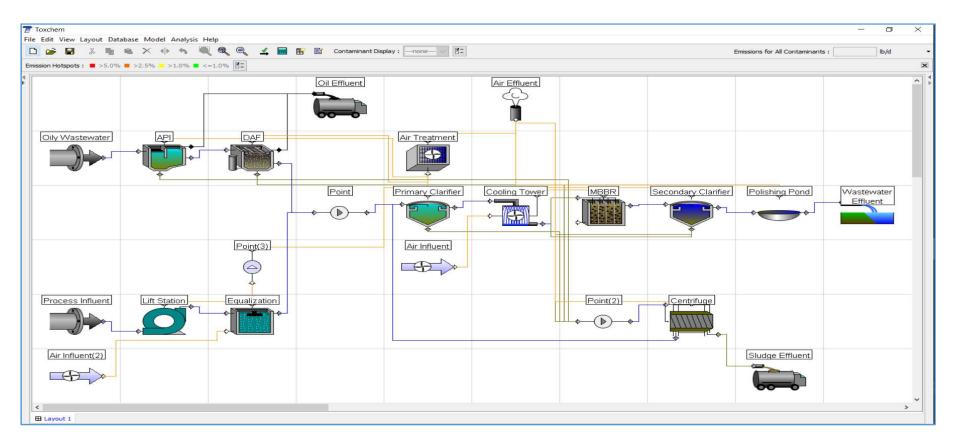
Cooling T	lower							Display :
			313	: 0.0 m3/d	-6			
Ŧ	ture : 16.0 C		182 : 1	0120 m3/d	-	E	305 : 107	17 m3/d
	tion Results							
			Makeup	Chemic	al	Blowdowr		
Flow		m3/d	10120		0.0	107	77	
TDS		ma/L	1308	1	308	478	39	
Ionic Stre	ength	mole/L	0.02377	0.02	377	0.092	56	
Conducti		microS/cm	2014	2	014	839	97	
pH		-	7.0		7.0	8.35	58	
Soluble P	PO4-P	mgP/L	10.0		10.0	0.363	36	
Langelier	r Stability pH	-	7.102	7.	102	6.8	76	
• •								
Operati	ional Variables							
			30	5				
Recircula	ation Flow	m3/d	e	48000				
Makeup \	Water Requiremen	nt m3/d		10120				
Concentr	ration Cycle	-		6.0				
Evaporat	tion Loss	m3/d		8435				
Drift Loss	5	m3/d		129.6				
Mass Fl	lows							
		182	313	305		Total In	Total Out	
TSS	kg/d	1571	0.0	-		-	-	
COD	kg/d	3036	0.0	-				
TN	kg/d	435.2	0.0	-				
TP	kg/d	168.0	0.0					

Biologica	l Tank						
Tempera	ture : 20.0	с		990 m3/d 980 m3/d		52 : 397 53 : 0.0	
Simula	tion Resul	ts					
			45	Internal	52		
MLSS		mg/L	1.881	80.28	80.28		
MLVSS		mg/L	1.727	71.25	71.25		
Soluble (COD	mg/L	7.0	3.0	3.0		
Ammonia	IN.	mgN/L	10.0	0.7586	0.7586		
Nitrite N		mgN/L	1.0e-06	0.1967	0.1967		
Nitrate N		mgN/L	1.0e-06	8.424	8.424		
Soluble F	04-P	mgP/L	1.0	1.006	1.006		
TDS		mg/L	1343	1233	1233		
Innin Etro		malall	2 550 05	0.02485	0.02485		
	ional Varia	ibles					
			52				
F to M Ra	atio	kgBOD5/(kgMLVSS.d)	0.160	07			
Vol. Org.	Loading	kgBOD5/(m3.d)	0.0114	45			
RAS Rec	ycle Ratio	%	99	.5			
Mass F	lows						
		45	205	52	53	Total In	Total Out
TSS	kg/d	3.742	314.8	318.7	0.0	318.5	318.7
COD	kg/d	19.9	435.2	446.5	0.0	455.1	446.5
TN	kg/d	20.15	46.47	65.87	0.0	66.62	65.87
	ko/d	2,119	9.391	11.5	0.0	11.51	11.5

Biological Process Tank

RO Process Treatment

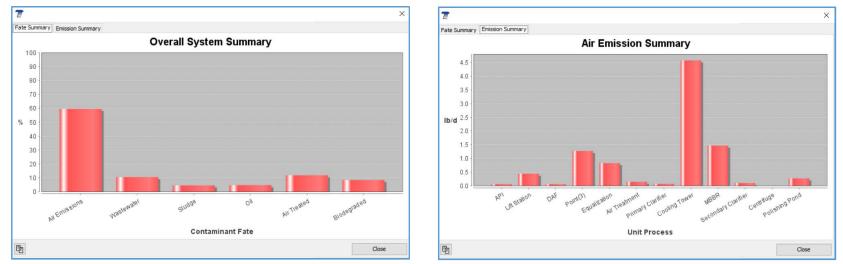
Evaporato						
			210	: 312.2 m3/d -		- 325 : 249.7
	re: 120.2 C				<u> </u>	326 : 62.43
Simulatio	on Results		Feed	Condensate	Blowdown	
						1
Flow		m3/d	312.		62.43	
TDS		mg/L				
Ionic Stren		mole/L	0.0505			
Conductivi	ty	microS/cm	959			
pH		-	1.8			
Soluble PC		mgP/L	4.51			
Langelier S		-	10.8			
p Alkalinity		mgCaCO3/L	0.		0.0	
	nal Variables					
			325			
Operating	Pressure	kPa	200.0			
Operating	Temperature	C	150.0			
	Temperature	C	120.2			
Boiling Ten	nperature	С	120.2			
Mass Flo	ws					
		210	325	326	Total In	Total Out
TSS	kg/d	0.0	-	-	-	-
COD	kg/d	5.511	-	-	-	
	kg/d	1.583			-	
TN						

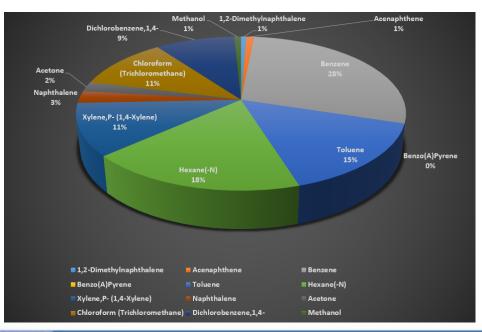

Evaporator

Wastewater	Outfall				
			2	16 : 1639 m3/d	
Simulation	Results				
			216		
Flow		m3/d	163	9	
TSS		mg/L	0.	0	
TDS		mg/L	51.8	3	
Ionic Strengt	onic Strength mole/L		6.069e-0		
Conductivity pH		microS/cm	115.		
		-	3.76		
Soluble PO4	-P	mgP/L	0.0539		
Langelier St	ability pH		12.5		
p Alkalinity		mgCaCO3/L	0.		
M Alkalinity		mgCaCO3/L	0.	0	
Operation	al Variable	s			
		216			
Overall EQI	kg/d	2.658			
Net EQI	kg/d	0.0			
Mass Flow	/s				
		216	Total In	Total Out	
TSS	kg/d	0.0	-	-	
COD	kg/d	0.3461	~	-	
TN	kg/d	0.09943			
TP	ko/d	0.0896			

Effluent Water Quality

- Robustly characterizes Physico-chemical and biological process
- Detailed cost and energy footprint
- Significant savings (< 1 year payback)


Case 4: Characterizing Emissions With Toxchem



- 50,000 m³/day of flow
- Multiple influent streams, with 13 contaminants across both streams
- Several unique process treatment steps
- Goal: Determine total air emissions and composition for CAA reporting

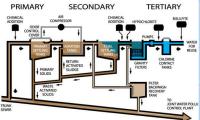
Characterizing contaminant Fate

Benzene

Odors and Air Pollutants

Case 5: Wastewater "Flight Simulator" for Agency Operating Over 200 Facilities

- Advanced operator training and education
- Identification and validation of plant optimization and cost saving strategies
- Project and risk analysis
- Key decision making support tool for all levels of management
- Engagement with stakeholders


Conclusion

- Regulatory, sustainability and economic drivers are making water management more challenging
- Advanced tools and solutions are required to meet current & emerging challenges
- Process models are an effective solution for meeting water & wastewater challenges
- Modeling solutions are applicable to all segments of the industry

Questions

Fabiyi@hydromantis.com 773-647-8872

Use of Process Models

CESS DESIGN & OPTIMIZATION					Wards UP	
reliminary Plant Design & Sizing		()	-	1		
etailed Plant Design & Sizing	Ø	-			Ø	
rocess Control & Optimization						
ocess Technology Evaluation & Comparison	0	O	O.		C	
eration System Sizing	6					
osolids Pretreatment	0					
utrient Removal & Recovery	9	0				
p-Digestion & Biogas Generation	0			0		
HG Footprint, Energy Optimization				0		
nit of Technology Evaluation	0	O	O			
inking Water Treatment Process Modeling	0			1	9	
mpliance & Risk Assessment	0	O	0	O		
sinfection – Water & Wastewater	۲			1	9	100
EMISSIONS MODELING						
DC & Air Emission Modeling			0			
ontaminant Fate Estimation	0		0	, I		
gulatory Reporting (NESHAP)			0			
TING						
fe Cycle Analysis	9	9				
fe Cycle Cost Analysis	0	0	0			
apital Cost Estimation		9				
perating Cost Estimation	0	0		· · · · · · · · · · · · · · · · · · ·		
ant Layout & Process Flow Diagrams	0	1	9	0	9	
RATIONS & TRAINING						
perator Training & Knowledge Management	()					
ustomized Facility Interface (3D & SCADA)				9		
ynamic Data Exchange	9			1		
Online Disinfection Management				C		C)