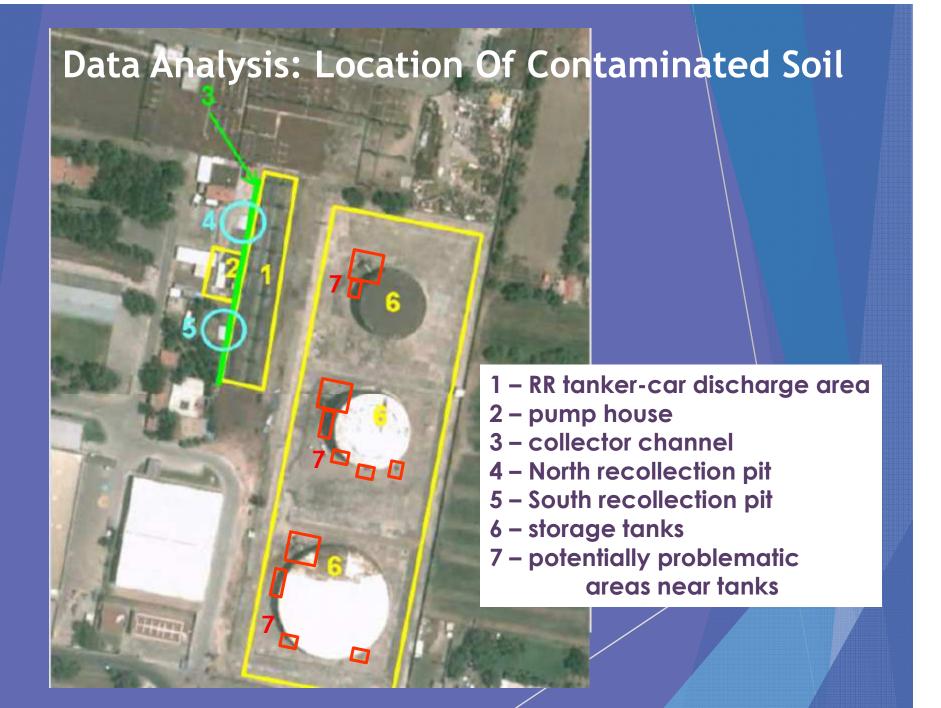
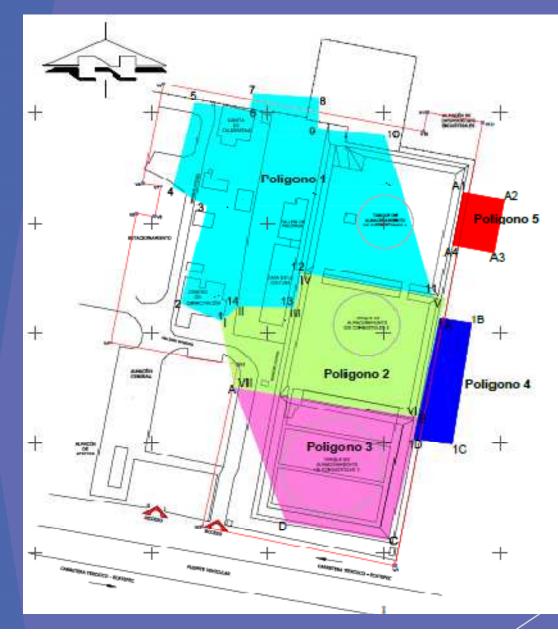
Rapid Remediation of Bunker C Fuel Oil Contaminated Soil by Chemical Oxidation and use of Surfactants and Solvents Formulation

Verónica I. Domínguez Randy H. Adams Liliana Hernández


Mariloli Vargas Rubén Viornery

Problem Situation



• Demographic Growth → requirement for more electricity

- Extension of the actual plant \rightarrow approx. double capacity
- But, it is necessary to remediate soil before construction of Plant II
- Plant I begins operation in 1963
- Used Bunker C fuel oil for thermo-electric generators
- Inadequate historical practices: storage, transport
- Site characterization according to Mexican norm
 NOM-138-SEMARNAT/SSA1-2012
- Risk-based determination of clean-up criteria:
 - 9,625 mg/kg Heavy Oil Fraction
 - 7,044 mg/kg Medium Fraction

Proposal - Official Resolution

Polygon 1 Phase 1 29,208 m³, up to 7m Chem. Oxidation + Bioremediation*

Polygon 2 Phase 2 12,928 m³, up to 3m Bioremediation

Polygon 3 Phase 3 5,147 m³, up to 1m Bioremediation

Polygon 4 Phase 3 658 m³, up to 3m Bioremediation/soil replacement

Polygon 5 Phase 3 264 m³, up to 6m Bioremediation/soil replacement

*Use of proprietary formula of surfactants/solvents and organic amendment to stimulate remediation

Note: the remediation method and cleanup goal were pre-estabilshed in Official Resolution

Optimization Tests (Lab)

Results of hydrocarbon analyses made on different treatments

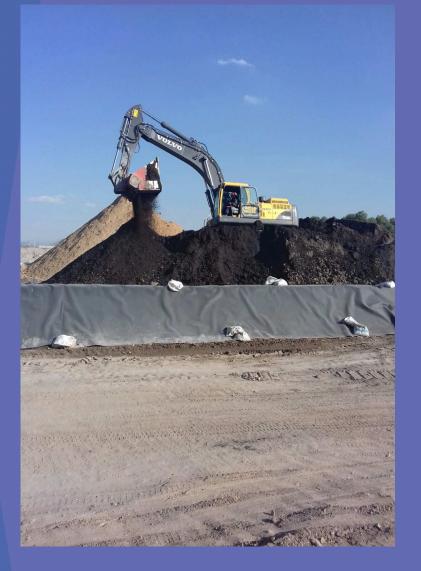
Treatment	Initial TPH (ppm)	Final TPH	% reduction	Reduction ppm
Peroxide 1% + Fenton	30000	11584	61	184165
Peroxide 0.84%	30000	16191	46	138093
*Peroxide 1.3%	30000	11271	62	187287
Peroxide 1.7%	30000	12078	60	179221
Peroxide 2.3%	15000	12656	59	177525
Peroxide 2.51%	30000	9910	67	20896
Peroxide 0.84%+ Formulation 2L/m ³	15000	12341	18	2659
Formulation 4L/m ³	15000	7606	49	7394
Formulation 6 L/m ³	15000	7675	49	7325
Formulation 1 L/m ³	15000	8144	46	6856
Formulation 2 L/m ³	15000	6643	56	8357
Peroxide 2.7%	30000	10128	71	24872
*Peroxide 1.3%+ Formulation 1 L/m ³	30000	10288	67	20712

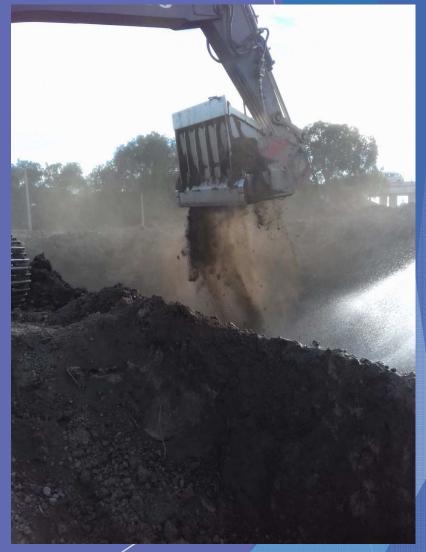
Optimization Tests (Lab)

Treatment	% Reduction
1.3% H ₂ O ₂ + 1 L/m ³ Formulation	73
1.3% H ₂ O ₂ + 2 L/m ³ Formulation	73
1.3% H ₂ O ₂ (Sandy Fluvisol)	74
1.3% H ₂ O ₂ + 1 L/m ³ Formulation	63
Soil from site	

Remediation Process

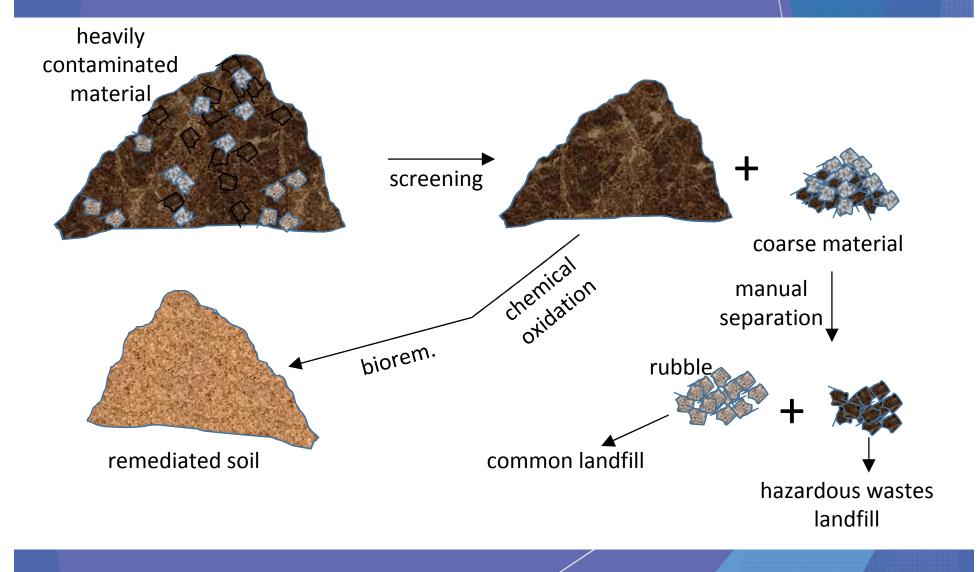
Treatment with specialized machinery


• Instead of excavators, ALLU crusher


 \rightarrow (specialized to crush and mix)

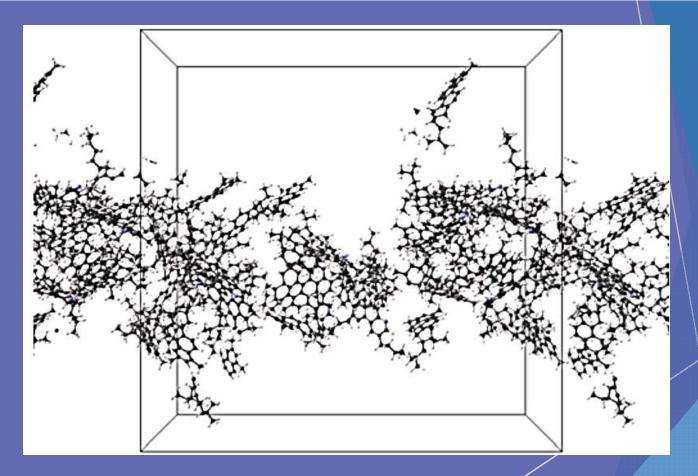
- Application of H₂O₂ in treatment piles by spraying during mixing with ALLU crusher
- Application of bioremediation stimulator formula by spraying and mixing with ALLU crusher
- Reduction in treatment time for chemical and biorem. phases
- Soil sampling in center of piles in recently mixed soil
- In-house monitoring with PetroFlag, calibrated using site soil and hydrocarbons
- For most areas remediation was achieved in 2 - 4 weeks

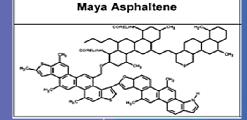
Application of Reagents and Mixing with Specialized Equipment


Treatment of Material with Large, Weathered HC Clumps

Some areas of site had concentrated HC clumps

- Treatment by screening to remove large clumps, rubble
- Remediation of screened by chemical oxidation and bioremediation (with surfactant/solvent formula)
- Manual separation of clean rubble
- Very heavily contaminated material (>10% heavy oil) and hydrocarbon clumps sent to landfill


Separation of Heavily Contaminated Soil and HC Clumps


3-D Structure of Asphaltenes and Self-Agglutination http://www.materialdesign.com

Pipeline plugging due to asphaltenes (London Centre for Nanotechnology www.london-nano.com)

• Asphaltenes are not determined with standard gravimetric test (i.e. EPA1664A) using hexane as a solvent

We ran alternative test using hexane and dichloromethylene as solvent:
 → differences of up to 2-3 fold

Total asphaltenes content in HC in soil:
 6 - 19% in problem soil

 Total HC in soil (not including asphaltenes but only extractable with DCM): 7 – 12%

•Total HC in soil (including asphaltenes): 8 – 13 % in problem soil!

Feasibility Studies of Problem Soil with Asphaltenes

Treatment	Initial TPH (ppm)	Final TPH	% reduction	reduction ppm
5% Peroxide + FeSO ₄	78,560	14,465.8	81.58%	64,094.2
7% Peroxide + FeSO ₄	81,112	14,339.0	82.23%	66,773
9% Peroxide + FeSO ₄	79,120	13,818.0	82.53%	65,302
5% Peroxide + Form. 2L/m ³	73,005	11,094.60	84.80%	61,910.4
7% Peroxide + Form. 2L/m ³	74,215	13,485.0	81.82%	60,730
9% Peroxide + Form. 4L/m ³	73,000	11,292.7	84.53%	61,707.3

- Increase in peroxide, formulation, has diminishing returns
- Reductions of up to 84%
- But still not meeting cleanup level (9625 ppm)

Conclusions

Optimization using: 1) lab/field test for reactant ratios

2) Specialized equipment designed for mixing (ALLU)

3) Formulation of surfactants/ solvents/conditioners

•Allows for rapid cleanup times (approx. 2 – 4 weeks)

•TPH reduction of 65 – 85% for Bunker C contaminated silty sand

Longer but possible up to 70,000 ppm initial TPH concentration

•Complications with higher concentrations, especially in asphaltenes contaminated soil

Thank you for your attention

