Exhibitor Showcase

Case Study of Application of Organophilic Clay Materials for Adsorption of Petroleum along Bulkhead at Petroleum Storage Facility

November 2016

* Unique stone-core design

Presentation Outline

- Problem Statement Groundwater/Surface Water
- Introduction to AquaGate Permeable Treatment
- Case Studies
- Summary/Questions

Problem - Ground Water to Surface Water Interaction

- Examples:
- Sheen
- Dissolved Phase PAH (i.e. BTEX)
- Metals
- PCBs

AquaBlok Technology Platform

A Delivery Method for Uniform Placement of Small Quantities of High-Value Materials

- Uniform Distribution
- Flexible/Rapid Installation (Low Cost)
- Custom Blends for Targeted Designs
- Can Vary/Control Permeability
- Self-Compacting for Low Permeability
- Placement Through Standing Water
- Marine & Freshwater Blends
- Passive Adsorption/Treatment Media

powder coating

aggregate core

AquaBlok/AquaGate+ "composite particle"

Aquagate Permeable Materials for In-Situ Treatment & Remediation Applications

Range/Applications for Contaminated Water

Technologies Available – AquaGate+ Delivery

Contaminant	Treatment Materials
PAHs, Pesticides, BTEX, PCB's (Free Product / Dissolved Phase)	Activated Carbon, Provect-IRM ¹ , Organoclay, Rubber
Gasoline	Provect-OX ¹ , Oxygen Delivery, Nutrients
VOCs	Activated Carbon, Zero Valent Iron, Bimetallic
Metals, Ammonia (Arsenic, Chrome, Mercury, etc)	Sorbster ² , Zero Valent Iron, Provect-IRM ¹ , Zeolites, Ferric Sulfides, Organic Carbon,

¹ Provectus Product ² MAR Systems Product

© 2008 AquaBlok Ltd.

www.aquablokinfo.com

Adsorptive Material – Petroleum Based Contaminants

Aquagate, ORGANOCLAYTM

REMEDIATION TECHNOLOGIES Technical Data

Aggregate: Nominal AASHTO #8 (1/4-3/8") or customsized to meet project-specific need * Limestone or noncalcareous substitute, as deemed project-appropriate

Binder: Cellulosic polymer

Permeability: 1 x 10⁻² to 1 x 10⁻⁵ cm/sec

Dry Bulk Density: $65 - 85 \text{ lbs/ft}^3$

Moisture: 10 – 20% (maximum)

ORGANOCLAY[®] P ORGANIC ADSORPTION MEDIA (POWDER GRADE)

Product Description:

Organoclay[®] P is a proprietary powder adsorption media effective in removing oils, greases other non-aqueous phase liquids (NAPL) and other dissolved high molecular weight/low solubility organic contaminants.

Characteristics:

- · Hydrophobic; will not absorb water or swell when wetted
- Non-toxic to marine and benthic organisms
- · High adsorption capacity of oils, greases and other NAPL
- Demonstrates noncompetitive sorption—can sorb multiple contaminants

Properties:

Property	Value	Test Method		
Particle Size	70% Min. passing 200 mesh sieve	CETCO Test Method		
Bulk Density	50-54 lbs/ft ³	CETCO Test Method		
Oil Adsorption Capacity	0.5 <mark>lb/lb Min.</mark>	CETCO Test Method		
Quaternary Amine Content	25% Min.	CETCO Test Method		

Permeable Reactive Barrier (PRB)

Contaminated Groundwater Flow AquaGate+ Tidal Organoclay PRB Estuary

Lab Testing of Aquagate+

Figure 3.3 - LNAPL Influence on AquaGate Porosity

Figure 3.4 - Change in Permeability due to Increased LNAPL Exposure

(c) No breakthrough observed in AquaGate Cell profile

Example Model Output Results

			Reactive layer			Sand thickness		Initial	Surface sediment (0-10		cm) Average bul	k concentration (
			Loading			(cm)		Porewater				
		For model	lb Oclay/cf	% Oclay by	thickness	1	I	conc(C0)(ug/L)				
Case	Media	(kg/m2/cm		wt	(cm)		Log Koc		Conc at 100 yrs	Conc at 200 yrs	Conc at 300 yrs	Conc at 400 yrs
Area	A:											
Extent of removal ranges from approx 1 feet to potentially 6 feet of sediment to reach a target elevation of 573						3 feet						
Pore	Porewater concentrations range from 1.6 ug/L to 958.2 ug/L with a mean of 195.8 ug/L and a 95 UCL of 427.5 ι							ug/L				
Кос і	ndex ranges	from 3.7 to 5	5.0 with a mea	n of 4.3								
Activ	e Layer Mix	of Organocla	ay and granula	r media								
	Oclay	2.28	14.20	14%	7.6	30.5	4.3	427.5	24.75	281.05	439.28	482.73
	Oclay	1.52	9.47	9%	15.22	30.5	4.3	427.5	0.74	131.86	373.12	468.94
	Oclay	5.32	33.14	45%	7.6	30.5	4.3	427.5	0.02	15.03	103.24	230.87
	Oclay	2.28	14.20	14%	15.22	30.5	4.3	427.5	< 0.01	14.47	142.16	317.19
***	Oclay	3.8	23.67	27%	15.22	30.5	3.7	958.2	25.23	215.75	258.64	261.60
	AC	1.95	na	na	1	30.5	4.3	427.5	71.29	209.75	300.43	357.02
Area B:												
Exter	าt of remova	ıl ranges fron	n none to 1 fee	t of sediment	to reach a	target elevation	n of 573 f	eet				
Porewater concentrations range from < 1 ug/L to 119.9 ug/L with a mean of 23.76 ug/L and a 95 UCL of 41 ug/L							<u>[</u>					
Koc index ranges from 3.8 to 5.6 with a mean of 4.6												
Activ	e Layer Mix	of Organocla	ay and granula	r media								
	Oclay	0.76	4.73	4%	7.6	30.5	4.6	41	20.95	78.90	90.14	91.29
	Oclay	0.76	4.73	4%	15.22	30.5	4.6	41	0 11	23 04	67.93	86.38
	Oclay	1.52	9.47	9%	7.6	30.5	4.6	41	0.67	26.21	62.56	81.30
	Oclay	2.28	14.20	14%	7.6	30.5	4.6	41	0.02	5.63	28.73	54.64
	Oclay	2.28	14.20	14%	15.22	30.5	4.6	41	< 0.01	< 0.01	0.23	3.13
***	Oclay	3.8	23.67	27%	15.22	30.5	3.8	119.9	0.81	23.75	38.28	40.70
	AC	1.95	na	na	1	30.5	4.6	41	11.76	37.63	55.42	66.74

Post-Placement Active Material Properties Confirmation Testing & Analysis

Did the Reactive Material Placed Retain the Adsorptive Properties Assumed in the Design?

C 1					
Sample Description	Samples	Oil sorption capacity (%)			
	1-1	71.70			
	1-2	68.36			
Kaw Orgaoclay	1-3	68.61			
(Control)	1-4	70.04			
	1	average 69.68			
	2-1	65.82			
	2-2	64.88			
As Manufactured	2-3	63.44			
Organociay	2-4	60.59			
	2	average 63.68			
Sample Buckets -	3-1	62.86			
(As-Placed	3-2	62.65			
Material Recovered from	3-3	61.40			
River Bottom)	3-4	61.99			
	3	average 62.22			

#1 Oil Sorption Capacity – Pre/Post Placement

Oil Sorption Capacity (% dry wt.) for samples

Samples of material were sent to CETCO for testing utilizing Test Method: LP-Organoclay Powdered Sorption Oil Centrifuge-modified to 72 hours

Funnel & Gate Approach to Address Ground Water Impacts from MGP Site

Site Location: U.S. EPA Region 2 Confidential Site – New York State

- Setting/Purpose: Canal/River (freshwater). MGP Site – PRB and low permeability barrier/cap over contaminated sediments. Site area was approximately 4,000 square feet.
- Contaminant(s) of Concern: Coal Tar associated with historic MGP site, including PAH (polynuclear aromatic hydrocarbons) and DNAPL (Dense Non-Aqueous Phase Liquids).
- AquaBlok Cap Design/Site Area: Multi-layer design comprised of a one inch basal layer AquaGate+ORGANOCLAY PRB covered with a hydrated layer (~6 inches in target thickness) of AquaBlok 3070FW. The cap was then armored with a two-inch layer of AASHTO #2 stone.
- Method of AquaBlok Placement: Shorebased excavator

Example of Sheen

The Approach – Funnel & Gate

not to scale

Funnel & Gate Approach - Continued

Below and Right: View of AquaGate+Organoclay Being Applied & Close up View in Place

Funnel & Gate Approach - Continued

Placement of Low-Permeability Cover Layer & Armor Stone

Case Study of Funnel & Gate Approach - Continued

Completed Cap with Armor Stone - Right

View of Completed Cap Following Spring – Water Levels Back to Normal Level - Left

Problem – Preferential Pathways

PREFERENTIAL PATHWAYS; UNDERGROUND PIPES AND UTILITY LINES CAN BE CONDUITS FOR THE MIGRATION OF CONTAMINANTS Written by Stephen R. Henshaw, P.G., President & CEO, EnviroForensics As seen in the March 2013 issue of Cleaner & Launderer

Typical Pipeline Construction

Preferential Flow Pathways: Conduits for Groundwater Contamination by Lisa Weatherford Tuesday, February 18th, 2014

"New research by the U.S. Geological Survey USGS) concerning the vulnerability of our nation's underground drinking water supplies offers a better understanding of how contamination can occur and what we can do to stop it. Yesterday we reviewed three basic measures for drinking water analysis and today we will look at the importance of preferential flow pathways contribute to groundwater contamination."

Application Examples Preferential Pathway - Flow Along Pipes

Setting / Purpose: Pipeline cap and Anti-Seep Collar. Objective was to cut off site contaminant pathways during excavation and installation of natural gas pipeline.

Key Benefits:

- Reduce potential impacts in Ecologically sensitive areas (River Crossings)
- Provide Seismic/Fatigue Dampening in Sensitive Areas

Installation Notes:

- Coffer Dam approach used to isolate pipe trench from surrounding soil
- Continuous measurement of AquaBlok performed to insure design thickness of cap

Handling/Installation Factors

Handling / Installation Advantages:

- Place directly through water column
- Self-compacts on bottom hydration fills voids to create stable erosion resistant cap layer
- Conventional construction equipment used for placement
- Easy to confirm uniformity of installation (core samples)
- Handles like sand or gravel
- Can be manufactured on-site for significant cost savings

Summary – Q&A

Aquagate Permeable Treatment Material for Remediation Applications:

Permeable Treatment Material for Sediment Remediation Applications

- Provides Uniform Delivery of Small Quantities of a High Value Treatment Material
- Use of Powder Treatment Materials = Faster Adsorption Rates
- Creates Thicker (uniform) Layers with Less Material Usage

 Ability to Mix Treatment Materials with other Granular Capping Materials and Provide Uniform Delivery in a Single Lift - Less Risk of Material Separation Wide Range of Treatment Materials

- Rapid Installation Using Conventional Equipment
- **Proven Full-Scale Production On-Site Manufacturing**