Ethical Chem A division of Ethical Solutions LLC

Surfactant Enhanced Remediation Technologies

Dan Socci, CEO 2014

Green Chemical Solution for Remediation and Oil Industries

ETHICALCHEM BACKGROUND

EthicalChem Background

- Recently acquired the intellectual property assets of VeruTEK Technologies Inc.
- Provides plant-based, green chemical solutions for remediation and oilfield applications

Remediation Technologies	Oilfield Technologies	
 SEPR (Surfactant Enhanced Product Recovery) S-ISCO (Surfactant-enhanced In Situ Chemical Oxidation) 	 Viscosity reduction Demulsification Drilling muds removal Wellbore cleaning Oily wastewater separation 	

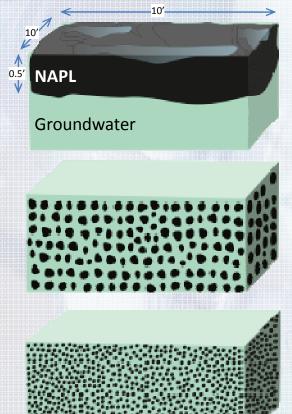
Field Proven Technologies

- ✓ 50+ remediation sites completed
- ✓ 20+ oil fields
- ✓ 10 patents

Green Chemical Solution for Environmental Remediation

REMEDIATION TECHNOLOGIES

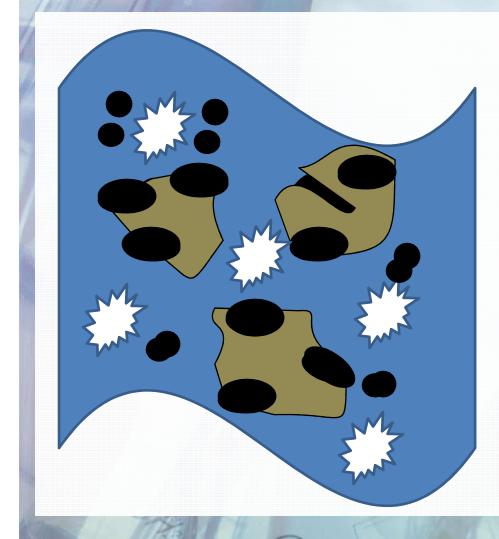
Remediation Technologies


- Surfactant-enhanced In Situ Chemical Oxidation (S-ISCO)
 - Desorbs and destroys residual contamination in place
 - Simultaneous injection of surfactant and oxidant

- Surfactant Enhanced Product Recovery (SEPR)
 - Desorption and gas generation improves recovery of Non-Aqueous Phase Liquid (NAPL) contamination
 - Implemented first to maximize S-ISCO performance

Emulsification and Surface Area

Emulsions increase interface area between oxidant and contaminant by several orders of magnitude

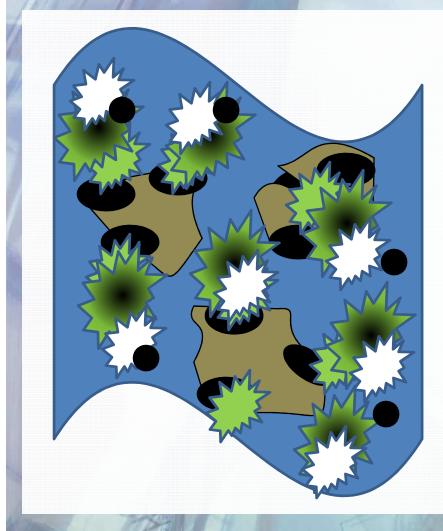

Volume: 50 cubic feet Surface area: 220 square feet

Volume: 50 cubic feet Emulsion Diameter: 1 millimeter Surface area: 91,440 square feet Approximately 2.5 orders of magnitude higher

Volume: 50 cubic feet Emulsion Diameter: 1 micrometer Surface area: 91,493,000 square feet Approximately 5 orders of magnitude higher

EthicalChem

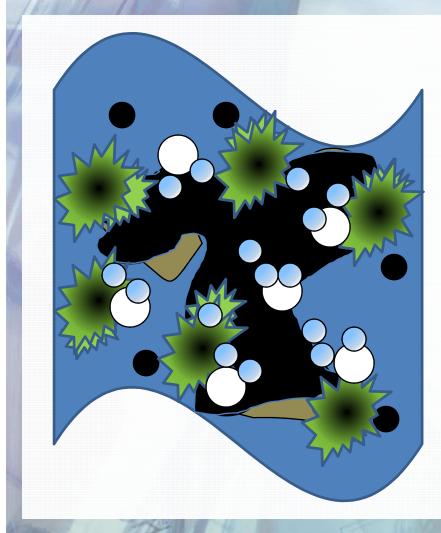
ISCO Performance



- Sorbed contaminants on soil and in soil pores
- Oxidants introduced into groundwater
- Dissolved contaminants oxidized
- Contaminants leach back into groundwater – Rebound

EthicalChem

• Repeat treatments


S-ISCO Performance

- Sorbed contaminants on soil and in soil pores
- Surfactant and oxidant introduced into groundwater
- Sorbed contaminants are emulsified into aqueous phase
- Complete removal of contamination
 no rebound

EthicalChem

SEPR Performance

- Bulk, free phase NAPL present in subsurface
- SEPR fluid injected
- Surfactants desorb and emulsify NAPL
- Gas bubbles generated from peroxide
- Help facilitate movement to recovery wells
- Residual contamination remains

Pre and Post S-ISCO Implementation

KEthicalChem

S-ISCO and SEPR Implementation

CASE STUDY EXAMPLES

Case Studies

- 1. S-ISCO treatment of VOCs in NY State
- 2. SEPR Creosote Recovery in a U.S. Gulf State
- 3. SEPR & S-ISCO MGP remediation in Sydney, AU
- 4. S-ISCO treatment of New York City Brownfield site

Site Textile Manufacturing Company

Contaminants of Concern TCA, Volatile Organic Compounds

Objectives Achieve NYSEC Commercial Use Soil Cleanup Criteria

Remedial Implementation S-ISCO

Consultant Fleming Lee Shue

S-ISCO

 Combined surfactant/oxidant desorb & destroy treatment for hydrophobic contaminants

RemMetrik

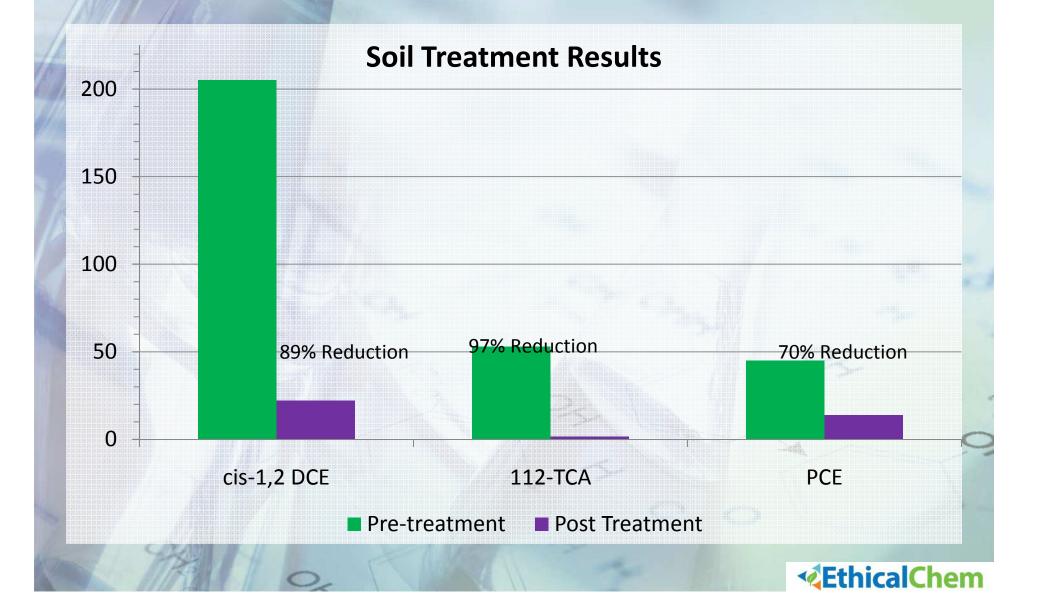
- Calculates the mass and 3D location of subsurface contamination
- Targets the contamination for treatment with S-ISCO and subsurface pressure waves
- Assesses the effectiveness of treatment

Wavefront Primawave

• Generates subsurface pressure waves that open soil pore spaces.

Treatment Details:

- 50 ft x 50 ft treatment area
- Saturated treatment of 10 15 ft bgs
- Treatment Adjacent to creak flowing into Hudson River
- S-ISCO chemical delivery
 - 3 permanent injection wells
 - -5 Geoprobe points
- 6 days of S-ISCO injections


S-ISCO injections

Alkaline activated Klozur (persulfate) and EthicalChem proprietary plant based surfactant VeruSOL.

Approximately 14,200 gallons of total fluids consisting of

- Klozur, 15 50 g/L
- Sodium hydroxide, 12 50 g/L
- VeruSOL 5-15 g/L

All GW Concentrations below site cleanup criteria

Groundwater Treatment Results

	Pre-treat	Post-treat	
	Max. Conc.	Max. Conc.	Percent
VOC	µg/L	µg/L	Reduction
Total VOCs	86,530	11,706	86%
ТСА	48,300	8,630	82%
112-TCA	34.5	2.3	93%
1,1-DCA	36,100	2,540	93%
Chloroethane	1,280	334	74%

WEthicalChem

Current Site Status:

Based on the post treatment results consultant has recommended site closure.

The site is currently under review for closure by the NYSDEC.

Creosote Remediation with SEPR Technology U.S. Gulf State

Site

• 34 acre Former Wood Treating Facility,

Contaminants of Concern

Creosote DNAPL

Objectives

- Enhance well yield of the existing recovery system in saturated zone
- Reduce soil concentrations of TPH in vadose zone

Treatment Details:

- 3 stage treatment approach
 - Well rehabilitation
 - Vadose zone NAPL removal
 - Saturated zone NAPL removal

SEPR Chemistry

- Up to 8% hydrogen peroxide
- 1-5% VeruSOL Creosote formula

Saturated Recovery Well Performance

Well	Pre SEPR Average Yield (gpm)	Post SEPR Average Yield (gpm)	% Increase
R5	0.82	2.40	193%
R9	0.16	1.11	594%
R10	0.11	0.23	109%
R12	0.24	1.27	429%
R15	0.31	0.67	116%
R17	0.04	0.54	1250%
R18	0.15	0.45	200%

AEthicalChem

Frac Tank Containing Extracted Fluid

KEthicalChem

Results:

- Enhanced recovery rates by up to 1200% in saturated zone
- Achieved 84% TPH mass reduction in the vadose zone
- Enhanced the removal of free phase creosote NAPL from the vadose and the saturated zone

SEPR & S-ISCO Remediation of MGP Contamination Sydney, AU

Site Former Gasworks Plant

Contaminants of Concern BTEX, PAHs, TPH

Objectives

Demonstrate effectiveness of SEPR & S-ISCO technology at the site

Remedial Implementation SEPR & S-ISCO

Treatment Details:

3 Stage Approach

○ SEPR Implementation – 2.5 weeks

20 – 40 g/L VeruSOL with 0.5 – 1.0% peroxide

S-ISCO Implementation with persulfate – 4.5 weeks

5 – 15 g/L VeruSOL with 100 – 200 g/L persulfate

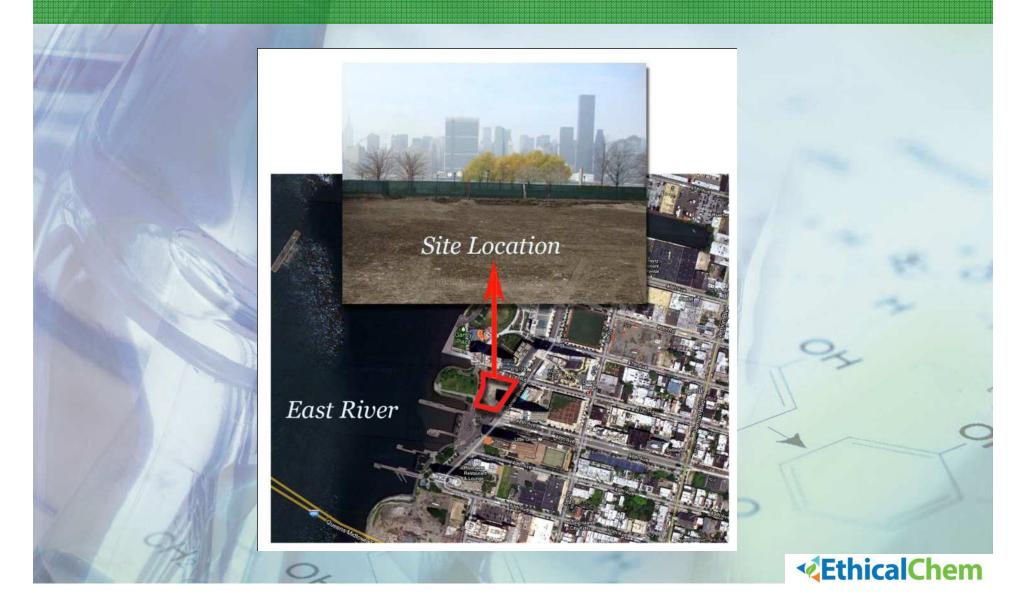
S-ISCO Implementation with peroxide – 2.5 weeks

5 – 10 g/L VeruSOL with 0.5 – 4% peroxide

Results

- 31 soil samples were analyzed post treatment
- Majority of samples reached criteria levels

Post Injection Samples Below Criteria		
Contaminant	Percent of Samples Below Criteria (out of 31)	
C10-C14	31	
C15-C28	30	
C29-C36	30	
cPAHs	20	
Benzene	31	
B(a)P	26	
Total PAHs	24	


Project Outcome & Current Status

- SEPR and S-ISCO technology was deemed effective for removal and destruction of site contaminants
- EthicalChem is currently engaged in submitting plans for full scale work
- Full scale is planned for March 2015

S-ISCO Remediation of MGP Coal Tar NYC Brownfield Site

Site Former Roofing Products Manufacturer

Contaminants of Concern BTEX, PAHs, & naphthalene

Objectives

Reduce contaminant mass to enable issuance of Certificate of Completion

Remedial Implementation S-ISCO

• Site Conditions:

- Former roofing manufacture site
- ~50,000 lb contamination
- BTEX, PAHs, naphthalene
- NAPL
- Heterogeneous subsurface

• Challenges:

- Adjacent to East River
- Dense urban neighborhood
- Weather
- NAPL

Northern edge of site boundary ~ 100 ft from high-rise, luxury residential building

Treatment Details:

- S-ISCO Implementation
 - 5 g/L VeruSOL
 - 25 50 g/L Sodium Persulfate
 - 20 g/L Sodium Hydroxide
 - Total injected volume = 1,201,900 gal
 - 100 days of injections
- **RemMetrik[™]** process to quantify & target contamination
- Wavefront Technology's Primawave Pressure-Pulsing Sidewinder

Implementation Monitoring:

Weekly Monitoring Showed:

- No NAPL mobilization beyond site boundaries
 - Controlled process
- No vapor pressure increases
- Reduced soil gas concentrations
- No nuisance complaints

Results

- Soil: ACHIEVED OBJECTIVE

 Destroyed > 90% Contaminant Mass (PAHs + BTEX)
- Groundwater: ACHIEVED OBJECTIVE
 - Reduced GW Concentrations; Achieved Asymptotic Decreases
 - 91% BTEX
- Soil Gas: REDUCED SOIL GAS CONTAMINANTS
 - 100% of benzene, ethylbenzene, naphthalene
- Certificate of Completion, New York State DEC, Dec. 2011
- Public Library & Park Ranger Station

On-going Quarterly Groundwater Monitoring Confirmed:

- No rebound
- Continuing asymptotic decreases
- Concentrations approaching Ambient Groundwater Quality Standards

BTEX: all wells exhibit overall decreasing or asymptotic trend "In samples collected 11 months following the end of injections the continuing overall decline instead of rebound suggests that the source contamination has been effectively treated."

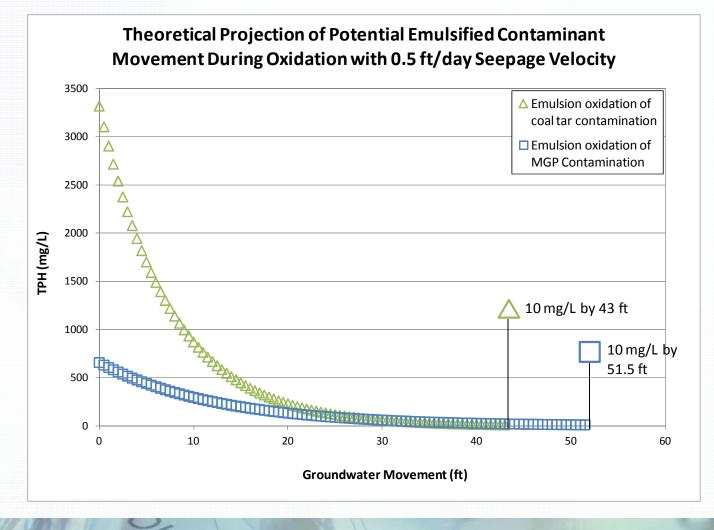
Fleming Lee Shue report

>Naphthalene: most wells show decreasing or asymptotic trend

Toluene: 3 more wells met TOGS AWQS

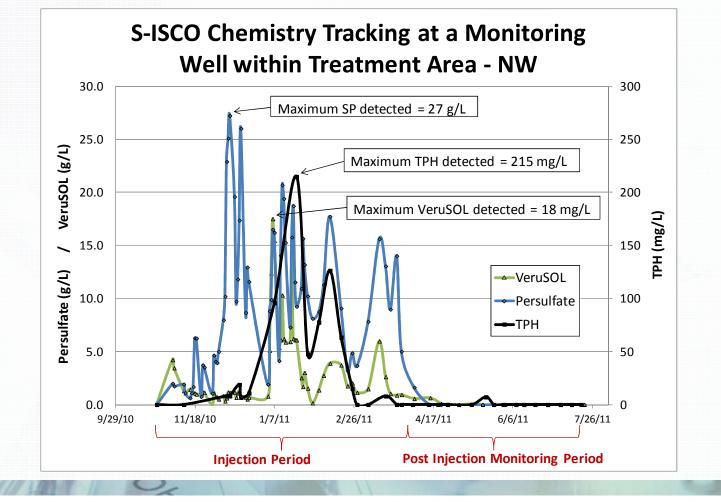
FAQs: Mobilization

Q: Will surfactant use cause undesirable contaminant mobilization?


Surfactant and oxidant are injected together as a homogeneous solution

Injected chemistry travels together through subsurface

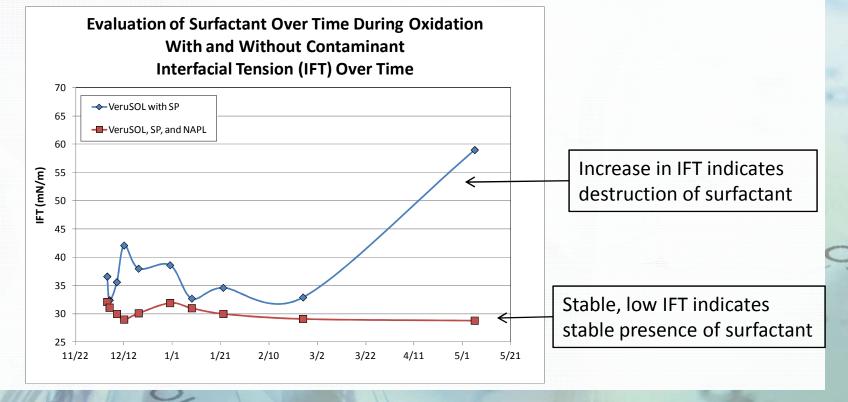
- Emulsification and oxidation take place simultaneously over time
- VeruSOL typically remains in the soil about a month due to biodegradation and oxidation
- Groundwater speeds typically do not carry emulsion offsite prior to destruction


FAQs: Mobilization

Field and lab projection of two emulsions, traveling vs. destruction

FAQs: Mobilization

 S-ISCO chemistry traveling together – data from an on site monitoring well during and after injections



FAQs: Surfactant Consumption by Oxidant

Q: Will the surfactant be consumed by the oxidant

Contaminants are more susceptible to oxidation than surfactant

o Contaminants will be oxidized first

