Real World Application of LNAPL Transmissivity to a Late Stage/Mature LNAPL Plume Site

H₂A Environmental, Ltd. Shannon Walker, PE swalker@h2altd.com

October 2014

www.h2altd.com

LNAPL Recovery - When is Enough, Enough?

- Most Large-Scale Industrial Facilities Have Fully Developed LCSMs
- Risks Have Been Fully Defined
- Significant Quantities of LNAPL Have Been Recovered via Effectively Implemented Active Remediation Techniques
- Plumes are Mature and Stable
- When is Enough, Enough?
- Controlled Application of LNAPL Transmissivity (T_n) Could be the Answer

Overview

- LNAPL Transmissivity Definition, Measurement, Application
- Regulatory Considerations
- Real World Application at a Texas Refinery
- Summary

An Ideal Metric

- Collective Property
 - incorporates physical/chemical properties of the aquifer and of the LNAPL (e.g., permeability, viscosity)
 - incorporates LNAPL type (benzene versus bunker oil)
 - incorporates aquifer type (sand versus clay)
- Fundamental or Characteristic Property
 - repeatable for given conditions
- Saturation/Mass Driven
 - multiphase saturation distribution
 - varies directly with LNAPL mass
- Easily Measured
 - supported with multiple lines of evidence
 - obtained prior to or during remediation

Measurement Techniques

- New ASTM standard, Standard Guide for Estimation of LNAPL Transmissivity (ASTM E2856-13)
- Goals included:
 - Identification of Critical Assumptions and Best Practices
 - Standardization of Methods
 - Method Selection Criteria Matrix
 - Consistency of Calculations
 - Large Dataset of Comparable Values
 - Extend the Science and Practical Application

Measurement Techniques

- Four Primary Measurement Methods (ASTM 2013)
 - Baildown/Slug Testing
 - Manual Skimming Testing
 - Recovery Data Analysis
 - Tracer Testing

Application Through Project Life Cycle

LNAPL Transmissivity

• Measure T_n

• MEP

Remedial Objective

Dissolved / Vapor Risks

Migration Risk

Direct Contact

Initial Response LCSM Development Model Calibration

Implementation Progress Metric

Remedy

• Proximity to Residual /EUR • Time to Threshold / RTA

Remedy Design

• Design Calculations Model Calibration

Remedy Selection Model Calibration • Threshold Evaluation

Threshold Evaluation • Technology Decision Pt.

Hydraulic Recovery Complete

• Other Pathways May Require Remedy(ies)

Strategic Application

TRRP-32, Risk-Based NAPL Management

Δ
$\langle \approx \rangle$
H ₂ A

	STEP
STEP 1	Conduct NAPL Assessment
STEP 2	Identify NAPL Response Triggers
STEP 3	Determine NAPL Response Objectives and Endpoints
STEP 4	Develop NAPL Management Strategy
STEP 5	Implement NAPL Management Strategy and Evaluate NAPL Response Effectiveness

TRRP-32, Risk-Based NAPL Management

S
2
0
-
÷
2
5
O
7
i.
S
2
-
2
CC
, Cc
y Co
ry Co
ory Co
tory Co
atory Co
latory Co
ulatory Co
ulatory Co
gulatory Co
egulatory Co

\sim
$\langle \mathbf{\sim} \rangle$
- N
H ₂ A
· · <u>~</u> · · ·

Endpoints (TRRP-32)Migrating NAPL Zone TriggerControl (via TI)Model Calibration Parameter Hydraulic Recoverability MetricRecoveryRecoveryTn time-series analysisNAPL Contact w/ GW Zone TriggerRecovery OnlyDesign Parameter "Readily Recoverable" MetricPerformance Evaluation• Technology Selection Based on Hydraulic Recoverability of LNAPLPerformance Evaluation• Operational Performance Metric• Operational Performance • Model Calibration Parameter	Endpoints (TRRP-32)	Migrating NAPL Zone Trigger	Recovery Only	* T_n time-series analysis		
(TRRP-32)RecoveryT _n time-series analysisNAPL Contact w/ GW Zone TriggerRecovery OnlyDesign Parameter • "Readily Recoverable" MetricPesign• Technology Selection Based on Hydraulic Recoverability of LNAPL • Model Calibration Parameter to Generate LNAPL Production Curves • Equipment Sizing, Volumetric Waste Mgmt. Plans • Fixed Base / Mobile Infrastructure Cost-Benefit AnalysisPerformance 			Control (via TI)	 Model Calibration Parameter Hydraulic Recoverability Metric 		
NAPL Contact w/ GW Zone TriggerRecovery OnlyDesign Parameter 			Recovery	• T _n time-series analysis		
Design • Technology Selection Based on Hydraulic Recoverability of LNAPL • Model Calibration Parameter to Generate LNAPL Production Curves • Equipment Sizing, Volumetric Waste Mgmt. Plans • Fixed Base / Mobile Infrastructure Cost-Benefit Analysis Performance Evaluation• Operational Performance Metric • Model Calibration Parameter		NAPL Contact w/ GW Zone Trigger	Recovery Only	 Design Parameter "Readily Recoverable" Metric 		
 Performance • Operational Performance Metric • Model Calibration Parameter 	Design	 Technology Selection Based on Hydraulic Recoverability of LNAPL Model Calibration Parameter to Generate LNAPL Production Curves Equipment Sizing, Volumetric Waste Mgmt. Plans Fixed Base / Mobile Infrastructure Cost-Benefit Analysis 				
Hydraulic Recoverability Metric	Performance Evaluation	 Operational Performance Metric Model Calibration Parameter Hydraulic Recoverability Metric 				

Implementation of T_n at a Texas Refinery

Real World Application

- Mature Hydraulic Recovery and Control System
- 56 Operating Recovery Wells in Compliance Plan
- LNAPL and Dissolved-Phase Plumes Stable
- Facility-Wide Plume Management Zone (PMZ)
- TRRP-32 Recovery Endpoint, "Recover Readily Recoverable NAPL Fraction"

Implementation of T_n at a Texas Refinery

Average Well Total Depth (feet) 40.8 Average Depth to Groundwater (feet) 32.5 Number of Wells with Measurable NAPL 57 (37.0%) Apparent NAPL Thickness Range (feet) 0.01 - 7.89 2013 Groundwater Recovery (gallons) 11,719,192 (99.5%) 2013 Hydrocarbon Recovery (gallons) 57,363 (0.5%) Average Fluid Recovery Rate (qpm) 18 Aquifer Hydraulic Conductivity (feet/day) 6.47

Implementation of T_n at a Texas Refinery

Real World Application

Overview of SCOR[™] Program

- TCEQ-Approved SCOR™ Program, Based on LNAPL Transmissivity (shutdown, control, operation, and recharge)
- Hydraulic Control Wells to Remain Operational
- All Other Recovery Wells Evaluated for Shutdown Using LNAPL Transmissivity
- Combination of Annual Recovery-Based T_n and Short Term Test T_n (via baildown, manual skimming, ratio tests)
- Test of Operating Wells for T_n versus 0.1 and 0.5 feet²/day Thresholds
- Operating Wells Must Requalify Each Year to Continue Operating

Overview of SCOR[™] Program

Results of 2014 SCOR[™] Plan Implementation

Wells Evaluated per Short-Term Test

 $T_n > 0.5 ft^2/day$ (continue operation)

Results of 2014 SCOR[™] Plan Implementation

Implementation of T_n at a Texas Refinery

- LNAPL Transmissivity is an Ideal Leading, Progress, and <u>Endpoint</u> Metric
- Multiple Applications Throughout Project Life Cycle, Strategic Consideration at Program and Management Levels
- Defines "Readily Recoverable" and Answers the Question "When is Enough, Enough?"
- Application at this Texas Refinery Resulted in More Efficient Use of Available Resources and Optimization of the Existing Remediation System

Questions/Comments

Shannon Walker, PE H₂A Environmental, Ltd. 682.593.0220, x-23 (office) 817.360.6961 (mobile) swalker@h2altd.com

www.h2altd.com