Long-Term Expectations for the Treatment of MGP Residuals by Chemical Oxidants

Saeid Shafieiyoun, Neil R. Thomson, Chris M Gasinski, Andrew P. Brey, William Pence

Funding

TECO Energy

NSERC

API

Introduction

- Before 1950, 1000s of plants manufactured combustible gas for urban use
- Process operations and poor residual management practices

Introduction

- About 1500 former MGP sites in the United States (USEPA)
- Remediation activities limited to isolation and removal of source material

Introduction

- MGP residuals are multi-component NAPLs
- large number of compounds
- weathering has produced higher MW mixture

Issues

- ChemOx treatment is promising
- Impacts on MGP residuals are unknown
- Hence long-term behaviour (> 5 years) of dissolved phase concentrations is a concern

Approach

- Impacted soil and groundwater obtained from a MGP site located in Florida.
- End-point expectations and potential constraints were evaluated by treatability batch experiments.
- Physical model experiments using impacted sediments
- A single cell numerical model was developed.

NAPL Composition

Organic	Concentration	MDL	Percent of
Compound	mg/kg	mg/kg	Identified
BTEX			
Benzene	2640	11.40	0.77
Ethylbenzene	4480	8.09	1.32
m-Xvlene & p-Xvlene	1880	8.09	0.55
o-Xvlene	738	7.83	0.22
Toluene	32.3	10.10	0.01
Trimethylbenzenes			
1.2.3-Trimethylbenzene	734	8.35	0.22
1 2 4-Trimethylbenzene	2260	7 75	0.66
1.3.5-Trimethylbenzene	756	8.61	0.22
Methylethylbenzene			
1-Methyl-2-othylbonzono	205	6.37	0.12
1-Methyl-2-ethylbenzene	2200	11.9	0.12
1-Methyl-4-ethylbenzene	1660	10.6	0.05
Hydrocarbons	1000	10.0	0.43
	000	44 7	0.00
Dodecane	44000	41.7	0.26
Hexadecane	11200	28.8	3.29
Nonacosane	1610	128	0.47
Octadecane	1940	38.4	0.57
Pentacosane	3060	101	0.90
Pentadecane	16400	22.8	4.81
letradecane	1740	28.8	0.51
Iridecane	560	52.2	0.16
Undecane	1360	57.2	0.40
PAHs			
1-Methylnaphthalene	25500	1100	7.49
2-Methylnaphthalene	46700	990	13.71
2,6-Dimethylnaphthalene	11500	3.41	3.38
2,3,5-Trimethylnaphthalene	1000	2.35	0.29
Acenaphthene	13300	2.53	3.90
Acenaphthylene	4050	2.74	1.19
Anthracene	6280	2.96	1.84
Benz (a) anthracene	3180	2.93	0.93
Benzo(a)fluoranthene	702	2.85	0.21
Benzo (a) pyrene	3160	4.10	0.93
Benz (b, k) fluoranthene	2890	2.85	0.85
Benzo(b)fluorene	1450	4.16	0.43
Benzo (g,h,i) perylene	1230	3.82	0.36
Benzothiophene	883	4.50	0.26
Biphenyl	4990	4.44	1.46
Carbazole	61	4.70	0.02
Chrysene	2810	2.90	0.82
Dibenzofuran	1500	4.52	0.44
Fluoranthene	7930	4.56	2.33
Indane	11200	92.1	3.29
Indene	1700	4.34	0.50
Fluorene	7720	3.83	2.27
Indeno[1,2,3-c,d] pyrene + Dibenz [a,h] anthracene	1309	3.90	0.38
Naphthalene	83800	625	24.60
Phenanthrene	26400	23.8	7.75
Pyrene	12900	3.78	3.79
Total (identified)	340670		

46 compounds

- 34% identified
- 66% unidentified (bulk)

Aqueous Treatability

Slurry Treatability

Experimental series:

- permanganate (PM)
- unactivated persulfate (PS)
- alkaline (pH of II) activated persulfate (AlkPS)

Slurry Treatability

UNIVERSITY OF

11

Physical Model

 explore the temporal expectations for ISCO treatment of the various NAPL architectures observed

Physical Model

System Operation

Flushing timeline

Controls - COC

Controls – Soil COCs

Oxidant Profiles

PM - bleb

18

PS - bleb

19

Bleb – Soil COCs

UNIVERSITY OF

Permanganate

Bleb – Soil COCs

UNIVERSITY OF

Persulfate

Oxidant mass balance

Bleb architecture:

- 50% of the permanganate mass injected was consumed
- I 8% of the persulfate mass injected was consumed

Treatment Expectations

UNIVERSITY OF

a single cell numerical model was used

Modeling Strategy

- I. Initial NAPL composition & saturation
- 2. Tracer tests effective porosity
- 3. Initial effluent concentrations λ
- 4. Effluent oxidant concentrations

Tracer Tests

PM-bleb Mass Transfer (λ)

1.4 16 Model Model 14 Trial 1 Trial 1 1.2 ٠ ٠ Trial 2 Trial 2 Naphthalene [mg/L] 12 Benzene [mg/L] 1 10 0.8 8 0.6 6 0.4 4 0.2 2 2 💠 0 0 0 L 0 10 15 PV 20 25 30 15 PV 20 25 5 10 30 5

Mass Transfer (λ)

System	Sn(%)	Porosity	λ (1/day)
PM-bleb	6.4	0.28	0.09
PM-lense	6.6	0.35	0.14
PS-bleb	4.3	0.35	0.06
PS-lense	7.9	0.35	0.10

PM-bleb Oxidant

PS-bleb Oxidant

UNIVERSITY OF

Model

Trial 2

• Trial 1

Ó

20

25

15

- I. PM-bleb (baseline)
- 2. PM-bleb (baseline) and no-treatment
- 3. Biological degradation
- 4. Biological degradation + oxidant

PM-bleb (baseline) < 1% of non-bulk NAPL mass "oxidized"

PM-bleb and no-treatment

UNIVERSITY OF

Biological degradation

UNIVERSITY OF

Biological degradation + PM

Sensitivity

- Pore velocity (I, <u>10</u> and 100 cm/day)
- Oxidant concentration (<u>30</u> vs 100 g/L)
- Mass transfer rate coefficient (λ)
 (0.09, 0.18, 1.8 /day)
- NAPL saturation (S_n) (0.1,1, <u>6.4 %</u>)

Sensitivity – pore velocity

Sensitivity – C_{ox}

Sensitivity - λ

38

Sensitivity $-S_n$

Summary

- Degradation of COC mass in aqueous experiments possible
- <u>Possible</u> to degrade (65-95%) of "quantified mass" in well-mixed slurry systems
- <u>Insignificant</u> "quantifiable mass" lost in all physical model systems
- Aggressive treatment with 6 PVs of oxidant results in <u>no change</u> to the long-term plume behaviour relative the "no action" alternative (<u>under model</u> <u>assumptions</u>)

THANKS