Investigating the *in situ* biodegradation of BTEX at an active refinery using bio-traps and molecular biological tools

> Katherine Clark Microbial Insights, Inc.

Kerry Sublette Department of Chemical Engineering University of Tulsa

What are Bio-Trap[®] samplers?

Collects active microbes

Integrated sample vs. "snapshot"

Analyzed using molecular biological tools, analytical chemistry, and stable isotope analysis

Bio-Sep® beads

- 3-4 mm in diameter
- 25% Nomex, 75% PAC
- Cleaned of fossil biomarkers by heating to 270 °C
- 74% porosity
- 600 m² of surface area/g
- Biofilms form rapidly on Bio-Sep[®] beads

Molecular biological tools (MBTs)

- Culture independent technologies
- Use biomarkers to gain information about microbial populations and activity:
 - Phospholipid Fatty Acids (PLFA)
 - DNA (genetic potential)
 - RNA (gene expression)
- Stable Isotope Probing (SIP) tracks ¹³C from a labeled contaminant as it is mineralized (CO₂ or methane) or metabolized (PLFA, DNA)

Assessing BTEX biodegradation potential at a refinery using molecular biological tools

Assessment of *in situ* BTEX biodegradation using MBTs

- Phase I: Groundwater survey using bio-traps and groundwater sampling
- Phase II: Microbial activity in the vadose zone studied in soil cores
- Phase III: SIP used to provide direct proof of benzene biodegradation in groundwater

Site map

Specific qPCR targets

- 16S rRNA genes
 - EBAC: total eubacteria
 - PM1: aerobic MTBE degradation
- Functional genes—Taxonomic
 - nirK and nirS: denitrifiers
 - APS: sulfate-reducing bacteria
 - MGN: methanogens
- Functional genes:
 - NAH, PHE, TOD: aerobic hydrocarbon degradation

qPCR analysis of DNA extracted from bio-traps in groundwater

- All gene targets detected in all 25 wells
- Genetic potential for aerobic oxidation, sulfate reduction, denitrification, and methanogenesis present across the site

Correlations		r	р
log [EBAC]	log [nirS]	+0.61	0.001
log [EBAC]	log [APS]	+0.55	0.004
log [EBAC]	log [MGN]	+0.71	< 0.001
log [EBAC]	log [NAH]	+0.64	< 0.001
log [EBAC]	log [PM1]	+0.60	0.002
[Toluene]	log [PM1]	+0.51	0.011

Groundwater BTEX concentrations

Geochemistry correlations

Correlations		r	р
log [BTEX]	[Fe ⁺²]	+0.54	0.009
log [BTEX]	[Methane]	+0.51	0.014
log [BTEX]	рН	-0.65	< 0.001
Alkalinity	ORP	+0.70	< 0.001
Alkalinity	[Ammonia-N]	+0.85	< 0.001

Site map

RT-qPCR analysis of **RNA extracted from soil cores**

- Gene targets associated with denitrifiers and sulfate reducers present in all 8 locations
- Expression of aerobic hydrocarbon oxidation genes detected in 5 locations
- Methanogenic gene target detected in 3 locations

Eubacteria rRNA in the vadose zone and groundwater [BTEX]

Contaminant Concentration

Overview of Bio-trap stable isotope probing (SIP) approach

Stable isotope probing with Bio-Sep[®] beads

Paul Philp, University of Oklahoma

¹³C Utilized for Biomass and BTEX Concentration

Relative proportion of fatty acids from the PLFA analysis of ¹³C₆-benzene-amended beads from the well MW10 bio-trap.

¹³C Utilized for CO₂ and BTEX Concentration

Relationship between SIP results and proximity to the river

Geochemistry comparison between river and non-river associated sites

Parameter	River (n= 10)	Non-River (n=15)	р
ORP (mV) ¹	-58.1 ± 89.2	-96.4 ± 64.8	0.26
Dissolved Oxygen ¹	1.0 ± 1.2	0.57 ± 0.32	0.06
(mg/L)			
Methane $(\mu g/L)^2$	4320 ± 2563	6934 ± 3212	0.04
Alkalinity (mg/L) ¹	522 ± 204	444 ± 89	0.11
Ferrous iron (mg/L) ²	6.5 ± 5.8	9.1 ± 7.5	0.36

¹Mann-Whitney U test ²Student's t test

Results of *in situ* BTEX biodegradation assessment

- A significant, diverse microbial community active in groundwater and vadose zone
- Likely BTEX biodegradation mechanisms: aerobic oxidation, denitrification, sulfate reduction, methanogenesis, and possibly Fe⁺³ reduction
- Microbial distribution in the vadose zone is more influenced by structural characteristics than groundwater hydrocarbon concentrations
- SIP provided direct evidence of benzene biodegradation in 6 of the 8 wells sampled

Questions?

