PARSONS

Characterization of Natural Biodegradation Using Benzene Carbon Isotopes, LNAPL Characterization and Geochemical Lines of Evidence

Glenn Ulrich and Paul Feshbach-Meriney

- Background
 - Site conditions
 - Lines of evidence approach
- Results Natural attenuation and biodegradation of:
 - Benzene and LNAPL in shallow groundwater
 - MTBE in deep groundwater
- Conclusions

Site Conditions and Activities

- 288 acres
- Former terminal
- ~20 LNAPL Plumes
- Geology
 - Fill
 - Peat, silt, clay (former marsh deposits)
 - Upper alluvium
 - Till (low permeability)
 - Lower alluvium

- LNAPL, soil, and groundwater investigations
- LNAPL recovery
- Remediation and redevelopment planning

Natural Attenuation Lines of Evidence Approach

Dissolved Phase

- Primary
 - Stable or shrinking plumes
 - Decreasing contaminant concentration trends
- Secondary
 - Geochemical conditions
- Tertiary
 - Microbiological and/or isotopic studies

LNAPL

- Compositional changes
 - Depletion of biodegradable hydrocarbons
 - Viscosity and density increases
 - Mobility decreases

Benzene Concentrations in Groundwater

Benzene Concentrations (1995 and 2013) (primary line of evidence)

MNA Geochemistry (secondary line of evidence)

Parameter	Count	Average	Median
ORP (mV)	111	-115	-101.6
DO YSI (mg/L)	62	2.0	0.72
DO 2013-Chemetrics (mg/L)	23	0.4	0.30
Ferrous Iron-Total (mg/L)	256	24.2	9.4
Sulfate (mg/L)	25	62	10
Methane (mg/L)	25	5276	4760

All MNA data from all depths

 Electron acceptor (oxygen, nitrate, sulfate) depletion and reduced products indicate hydrocarbon biodegradation.

Sulfate Depletion and Methanogenesis

Secondary Lines of Evidence:

- Confirms hydrocarbon biodegradation
- High methane associated with LNAPL areas

Plume 10. Sulfate (mg/L)

Benzene Biodegradation: Carbon (C) Isotope Analysis Background (tertiary line of evidence)

- MNA geochemistry (electron acceptors and reduced products) can't be used to determine biodegradation of specific hydrocarbons
- Carbon occurs as ¹²C and ¹³C (light and heavy isotopes)
- ¹²C-benzene is biodegraded at a faster rate than
 ¹³C-benzene
- Remaining benzene becomes heavier (enriched in ¹³C; less negative value)

Benzene Biodegradation: Continued

S-Benzene	,
ncreasing ¹² C	

		Benzene				
		C Isotope				
Area	Benzene	Value	D.O.	Sulfate	Iron	Methane
	(μg/L)	δ13C (‰)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Plume 7DT	1.3	-25.5	0.60	< 10	5.29	0.473
Plume 10	13.6	-26.1	0.10	< 10	40.2	12.4
Plume 10	1.3	-26.5	1.0	20.7	1.51	0.702
Plume 7DT	8	-27.2	6.0	18.9	61.2	0.455
Plume 4	757	-27.3	0.10	< 10	71.3	12.2
Plume 4	12.7	-27.7	0.05	< 10	48.2	8.18
Plume 10	283	-27.8	0.20	< 10	44.5	13.4
Plume 4	0.8	-28.4	0.10	< 10	47.7	1.74

- Benzene biodegradation generally associated with:
 - Less reducing conditions
 - Lower dissolved methane
 - Lower iron
 - Presence of sulfate and/or dissolved oxygen

MTBE Biodegradation (tertiary line of evidence)

Sample ID	Sample Date	MTBE (μg/L)	TBA (μg/L)	MTBE/ TBA	MTBE δ13C (‰)	Benzene (μg/L)	Alkalinity (mg/L)	Methane (mg/L)	Sulfate (mg/L)	ORP
CMW007I-52.74	5/20/2013	107	1,250	0.1	-8.3	< 0.24	540	10,100	10	-55.7
DMW004I-55.5	5/21/2013	214	666	0.3	-27.1	< 0.24	691	64	57	200.5
LOMW062I-63.0	5/14/2013	9,470	140	67.6	-30.9	18.9	139	4,760	1,010	145.5

- Significant MTBE biodegradation indicated (MW007I):
 - Closer to source.
 - More reducing conditions
 - ~ 80% degradation indicated by C-isotope value

Perimeter MNA Approach - Applicability for Benzene

- Concept
 - LNAPL recovery to extent practicable
 - MNA at perimeter
- Considerations:
 - Benzene
 - Benzene concentrations decrease downgradient of LNAPL plumes.
 - Limited data indicate benzene concentrations are mostly decreasing.
 - Benzene is biodegrading (spatially variable).
 - Monitoring limitations
 - None
 - Receptors Impacted
 - Benzene below GWQS or at low concentrations near surface waters
 - Imminent threat to receptors
 - No
 - Natural remediation of free and/or residual product is not allowed.
 - Enhance natural biodegradation of residual LNAPL after recovery

Bemidji: Natural Anaerobic LNAPL Biodegradation Case Study

- Long-term USGS MNA research site
- Crude oil release in 1979

Bemidji: Factors Controlling LNAPL Biodegradation

Bekins et al; 2005 (with permission)

Canada Site: Natural LNAPL Biodegradation

- Well site in Canada
- Gas condensate in silty clay aquitard
- Iron sulfides account for degradation of up to 1,000 mg/Kg hydrocarbon in capillary fringe

From Stempvoort and Kwong; 2010 (with permission)

Natural Anaerobic LNAPL Biodegradation - Oil Reservoirs

- Anaerobic biodegradation of crude oil common in shallow reservoirs
- Increased biodegradation towards oil/water contact
- n-alkanes and smaller hydrocarbons biodegrade more rapidly
- Up to 50-60% oil mass loss
- Oil viscosity and density increase, mobility decreases

This Site: Natural Anaerobic LNAPL Biodegradation

- LNAPL across the site is weathered due to biodegradation
 - Preferential loss of n-alkanes relative to branched alkanes
 - Preferential loss of toluene relative to benzene in less weathered LNAPL
 - Less LNAPL biodegradation in middle of LNAPL plumes

This Site: Spatial Variability in LNAPL Weathering

Severe LNAPL weathering observed within upgradient position of LNAPL

plume 100-A.

 Consistent with increased LNAPL biodegradation upgradient at Bemidji site.

Planning for Enhanced Anaerobic Biodegradation of Residual LNAPL

Residual LNAPL Treatment Trenches

PARSONS

Conclusions

- Primary, secondary, and tertiary lines of evidence collectively provide good indicators of benzene/MTBE biodegradation
- Data support a perimeter MNA approach for petroleum
 - Petroleum hydrocarbons are biodegrading
 - Benzene is biodegrading (spatial variability)
 - Low benzene concentrations downgradient of LNAPL Areas
 - Mainly decreasing benzene concentrations
- Data support enhanced anaerobic biodegradation of residual LNAPL
 - Anaerobic LNAPL biodegradation is occurring
 - Higher benzene concentrations in LNAPL areas
 - Electron acceptors depleted and less evidence for benzene biodegradation in LNAPL areas
- Delivery systems to enhance residual LNAPL biodegradation can be installed

Thank You

glenn.ulrich@parsons.com

573-762-2410