

An Aqueous Method of Crude Oil Emulsification is Proving to be Effective at Remediating Tank Batteries and Other Hydrocarbon Releases

IPEC 2014

William Lundy Sr.

DeepEarth Technologies, Inc.

The Traditional Solution

- Type of Spill (Oil − Brine − Both)
- Location of Spill, (Proximity to Water, Sources, People, Buildings, Site Structures, Roads, etc.
- Type of Soil (Clay, Sand, Other)
- Time constraints (Odor, Public Perception, etc.)
- Regulatory Impacts (Notifications, etc.)
- Select Cleanup Method (Generally Landfill)

chnologies, Inc. Typical Approaches to Spill Cleanup

- Site spill assessment
- Containment of the spill
- Collect "free" oil using mechanical means such as oil booms, skimmers or vacuum trucks.
- Excavate all contaminated material from the area.
- Dispose of contaminated material at a site accepting hazardous waste
- Haul in new soil and compact in place.

The Proposed New Order

Reduce Waste Generation

Controlled – In Plant

Uncontrolled – Production Releases

Reuse

On-site treatment

Limit Excavations (Landfill Impact)

Recycle

Use Treated Waste for Cover, etc.

Chemical Oxidation & Bioremediation

- Chemical Oxidation can Completely (Carbon Dioxide) & Partially (Hydroxylate) Oxidize Hydrocarbons
- Partially Oxidized Hydrocarbons Are Highly Biodegradable
- Cool-Ox® Oxidizes Hydrocarbons but, Does Not Kill Bugs
- Not Exothermal No VOC volatilization
- Optimizes at Near Neutral pH (8.0)
- No Sodium (Na) or Potassium (K)! Thus SAR is Reduced)
- No Corrosion No Persulfate compounds
- Flammability Static Discharge protected
- Long Term, On-Going Oxidation (90-120 days)

- Green In-situ and Ex-situ Oxidation technology leaving no by-products
- Treats both soil and groundwater
- Uses food grade chemical oxidants
 - -Clean Hydrogen peroxide, H₂O₂
- Most Important Destroys Contaminants

The Chemistry

(Produce Hydrogen Peroxide In-Situ)

$$CaO_2 + H_2O \rightarrow Ca^{+2} + OH^{-1} + H_2O_2 + O_2$$

(Chelates Activate Intrinsic Catalysts - Produces Radicals)

$$H_2O_2 + Fe^{+2} \rightarrow OH^{-1} + [OH]^{\bullet} + Fe^{+3}$$

$$H_2O_2 + Fe^{+3} \rightarrow OH^{-1} + [OOH]^{\bullet} + Fe^{+2}$$

(Radicals React with Contaminants – Oxidation By-products)

$$[OH]^{\bullet} \& [OOH]^{\bullet} + C_{x} \rightarrow C_{x}(OH)_{y} + CO_{2}$$

(Biodegradable By-products Used by Microbes)

$$C_x(OH)_y + O_2 \rightarrow CO_2$$
 Totally Green

(Reductive Dechlorination)

$$_{n}C_{2}(CI)_{x} + (OH)^{T} \rightarrow _{n}CO_{2} + (CI)^{T}$$

What is a "Green" Process?

Non-toxic

Safe for the environment and people who handle the product

Renewable & Sustainable

- Product ingredients are derived from sources that do not deplete the environment
- The product source(s) meet today's needs without compromising future supply

Commercial Viability

- The process works better than conventional technology for the intended purpose
- The process makes sense economically

The Current Scene

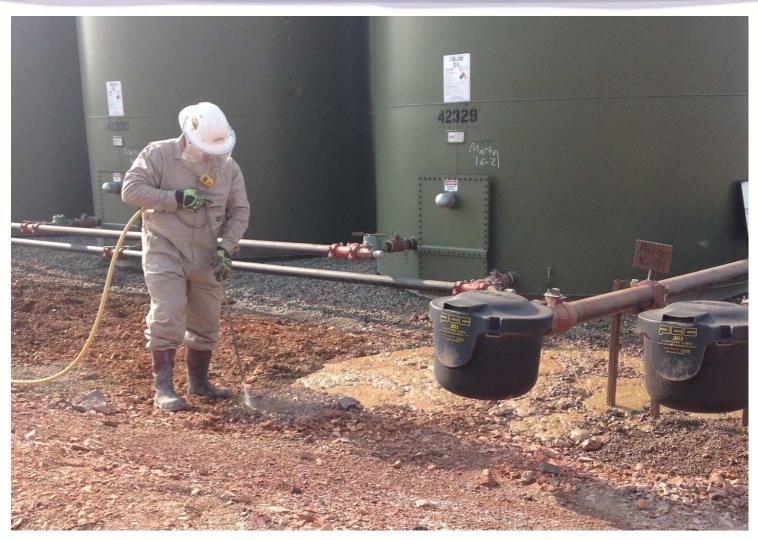
- Increasing numbers of accidental oil spills requires effective remedial solutions.
- Excavation and disposal of contaminated soils is the traditional remedy but, is growing less acceptable.
- Proper application of chemical oxidation Coupled with Subsequent Bioremediation (Cool-Ox Technology) can provide a solution.

Contact is Vital

Why is the method of delivery in the field so important?

- Contact Sport!
- The oxidant and contaminant must meet for a chemical reaction to occur.
- Proper application is vital to a successful remedial project.
- Nothing beats Know-How!

Technologies, Inc. Technologies, Inc. The Deep-ShotTM Rig



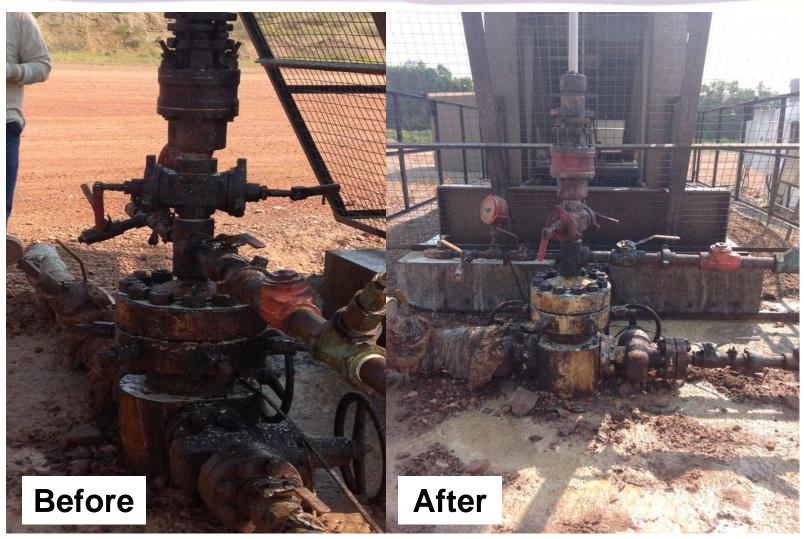
Formulating - Mixing - Pumping

Technologies, Inc. Hydro-DartTM Application

Tank Battery

Well Pumps

Reactions



Treatment at Well Head

Crude Release

of the control of the

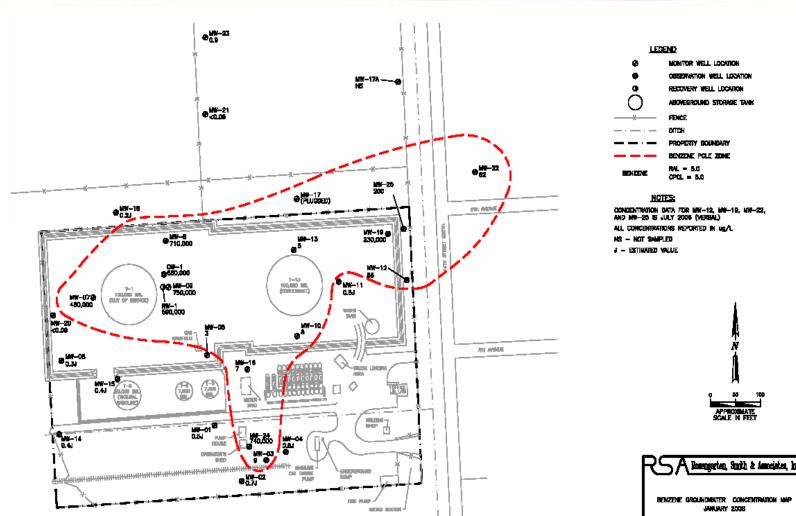
4 Weeks Post Treatment

Large Spill

natu.

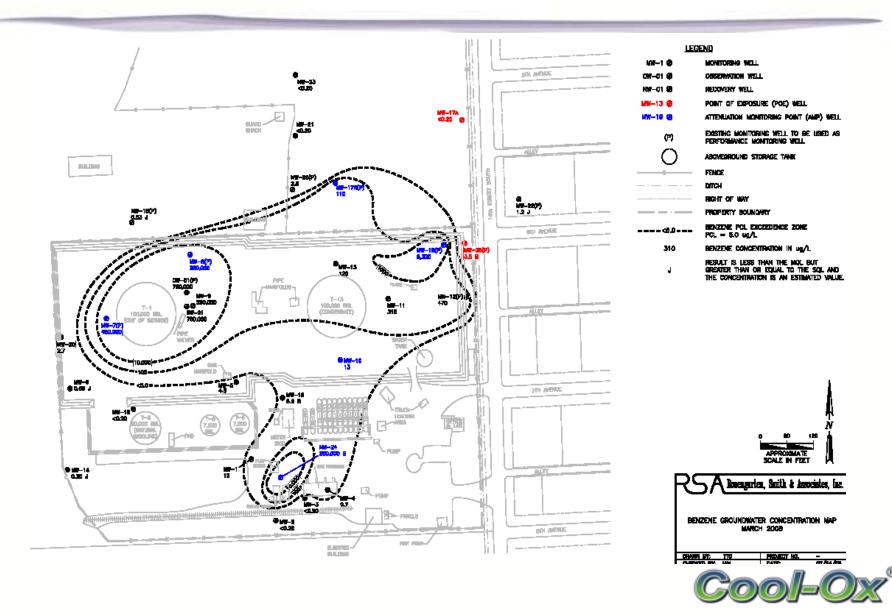
Typical Old Release

MGP Site

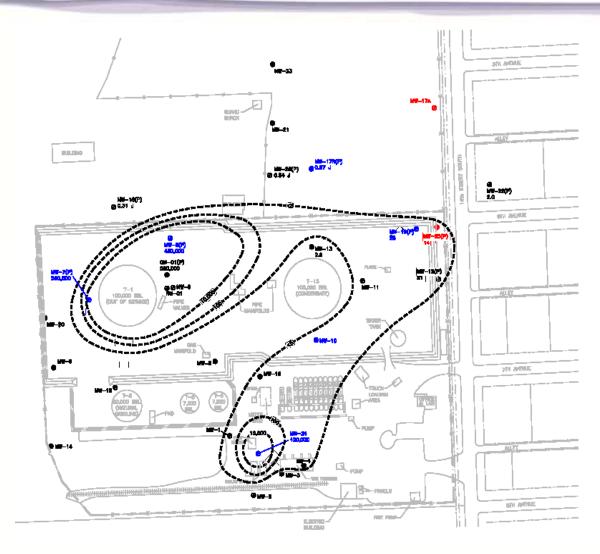

Tar well

Excavating Look at the Bucket

Technologies, Inc. Groundwater Impact



BENZENE GROUNDWATER CONCENTRATION NAP


Post Injection- 2 Wks

Post Injection— 3 Mos

LEGEND

MW-1 @	MONETONING MELL
OW-01 @	COSEDINATION WEL
RMF01 68	NECKWERY WELL

MM-13 @ PORT OF EXPOSURE (POE) WELL

MW-10 8 ATTENUATION NONTORING POINT (AMP) WELL

(P) EXISTING MONITORING WELL TO BE USED AS PERFORMANCE MONITORING WELL

ABOVEDROUND STORAGE TANK

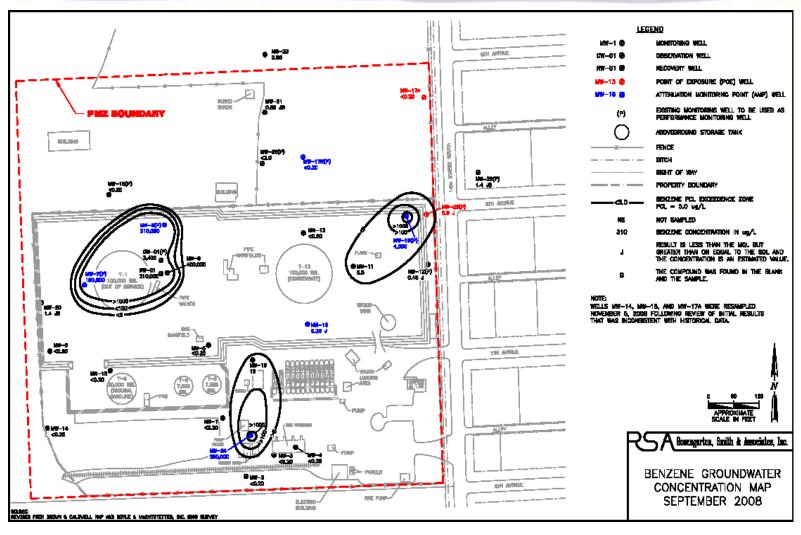
BENZENE PCL EXCEEDENCE ZONE

PCL = 5.0 μg/L

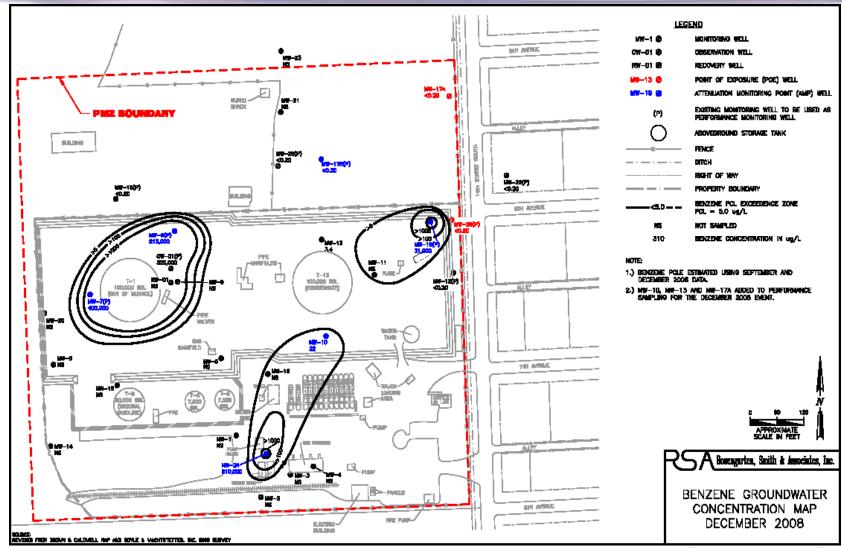
310 SENZENE CONCENTRATIONS IN µg/L

NOTES:

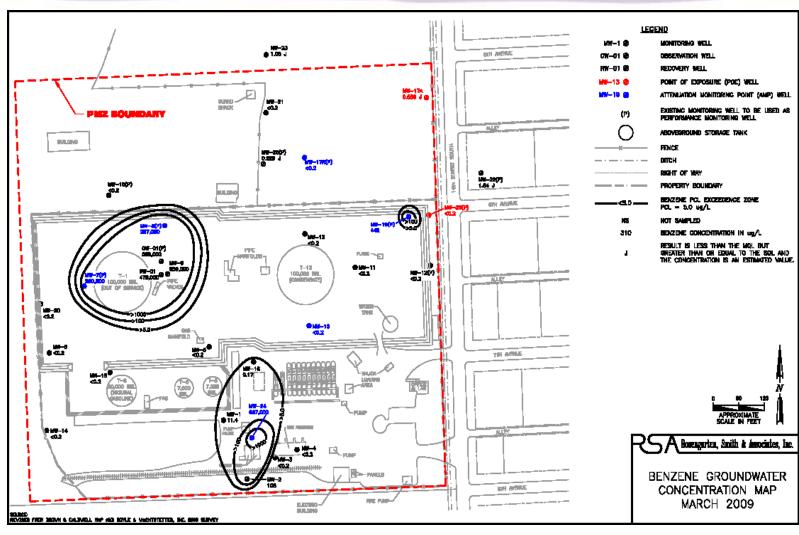
- 1.) BENZENE POLE ZONE ESTIMATED USING MARCH
 A. JUNE 2008 DATA.
- MF-13 & MF-24 ADDED TO PERFORMANCE SAMPLING FOR THE JUNE 2008 EVENT.



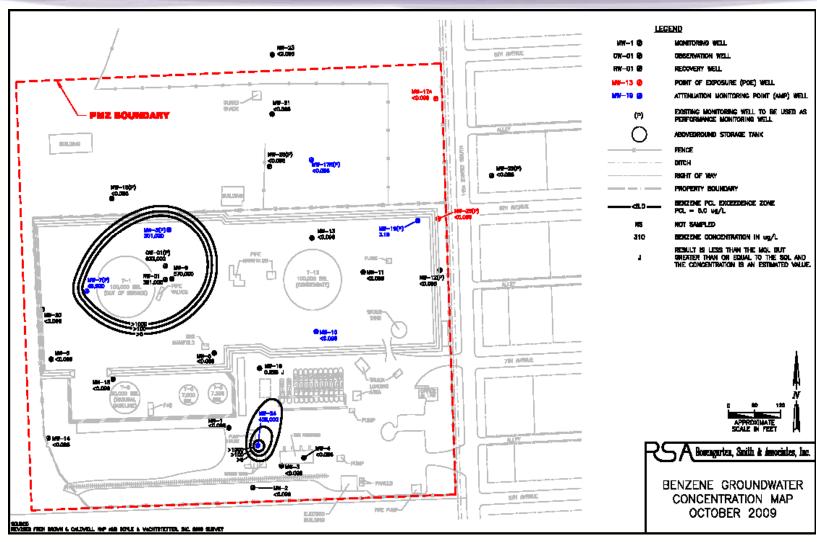
Post Injection – 6Mos



Post Injection—9 Mos



Post Injection—12 Mos



Post Injection – 18 Mos

Conclusions in the Midstream Production

Analytical Results of Samples Collected from Garfield County, Colorado Natural Gas Production Facilities (Treated with Cool-Ox™)

Sample #	-	Reactor Time	pН	EC	SAR	Benzene	Toluene	EB	Xylene	TRPH
#1	From Drill Pit									
		Day "0"	7.4	14160	76.6	68.5	154	ND	291	58.7
		Day 28	7.5	35490	4.7	ND	ND	ND	87.3	11.7
						100%	100%		70%	80%
#2	Seperator Sludge									
		Day "0"	9.2	11640	57.3	ND	ND	ND	151	2,530
		Day 28	10.6	6000	5	ND	ND	ND	ND	804
									100%	68.20%
#3	Land Farm Native Soil									
		Day "0"	8.8	3852	23.3	ND	ND	ND	ND	ND
		Day 28	8.3	13680	1.4	ND	ND	ND	ND	ND
#4	Land Farm Frac Sand									
		Day "0"	8.9	48840	91.2	577	2,580	228	159,000	83,600
		Day 28	8.4	18930	6.7	ND	594	49	87,000	36,500
						100%	77%	78.50%	45.3%	56.30%
#5	Pit Cuttings									
		Day "0"	8.5	10740	10.9	161	226	ND	264	48,800
		Day 28	6.5	8550	2.2	ND	ND	ND	36.3	121
						100%	100%		86.3%	99.8%
#6	Frac Sand									
		Day "0"	8.8	969	2.1	2,340	90,200	9,550	576,000	344
		Day 28	9.6	7920	0.8	ND	2,580	1,320	75,400	121
						100%	97.3%	86.2%	86.9%	64.8%
#7	Production Waste									
		Day "0"	8.5	1290	4	ND	ND	ND	ND	796
		Day 28	12.1	8880	0.6	ND	ND	ND	ND	376
										52.8%
#8	Frac Sand (Ten-150 Yard Piles)									
		Day "0"	9	19140	78	ND	121	ND	1,510	3,330
		Day 28	11.2	7620	2.5	ND	ND	ND	ND	1,580
							100%		100%	52.6%

Another Large Site

- 2,072 injection points
- 10,284 injected feet
- 154,260 gallons of Cool-Ox[®]
- 9,020 safe work hours during the coldest 5 months that Philadelphia has seen in a long time (63 inches of Snow – Av 13 inches)
- 6" DNAPL Halogens (DDT, CE, CB, DCE, DCA, HC)
- 69% Mass Reductions one appl.

William Lundy Sr. DeepEarth Technologies, Inc.

12635 Kroll Drive Alsip, IL 60803 708-396-0100

www.deepearthtech.com

Remember Total Green

Deep Earth Technologies, Inc. Deep or Highly Weathered Contamination

Highly weathered hydrocarbon

 High fractions of heavy hydrocarbons & high TPH at bioremediation endpoint

Deep contamination

- Excavation?
- Cost of excavation increases with depth & volume of contaminated soil
 - Risks of exposure increase

The need for speed

- Small spills
- Immediate threat to environmental receptor
- High evaporation rates (VOCs) and odor issues

Site Locations

DEEPEARTH TECHNOLOGIES INC. SITE CLOSURES - AND PENDING CLOSURE

chnologies, Inc. Typical Approaches to Spill Cleanup

- Site spill assessment
- Containment of the spill
- Collect "free" oil using mechanical means such as oil booms, skimmers or vacuum trucks.
- Excavate all contaminated material from the area.
- Dispose of contaminated material at a site accepting hazardous waste
- Haul in new soil and compact in place.

